Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Шебзууминистерство науки и высшего образфвания российской федерации

Должность: Директор Пятиг Федерантиное фосударственное завтономное образовательное учреждение

федерального университета высшего образования

Дата подписания: 08.06.2023 15:23-27 «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Уникальный программный ключ:

Уникальный программный ключ:
d74ce93cd40e39275c3ba2f58486412a1c8ef96f
Колледж Пятигорского институт (филиал) СКФУ
Колледж Пятигорского института (филиал) СКФУ

УТВЕРЖДАЮ

Директор Пятигорского института (филиал) СКФУ Т.А. Шебзухова

Рабочая программа учебной дисциплины

ОП. 06 Основы алгоритмизации и программирования

09.02.01 Специальность Компьютерные системы и комплексы

Форма обучения очная Рабочая программа учебной дисциплины ОП.06 Основы алгоритмизации и программирования разработана на основании федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.01 Компьютерные системы и комплексы.

Рабочая программа учебной дисциплины разработана:

1 Хаджиев А.А., преподаватель колледжа Пятигорского института (филиал) СКФУ

фамилия, имя, отчество, ученая степень, ученое звание, место работы преподавателя

1.Паспорт рабочей программы учебной дисциплины

1.1. Область применения программы.

Рабочая программа учебной дисциплины ОП.06 Основы алгоритмизации и программирования является частью образовательной программы в соответствии с ФГОС СПО по специальности 09.02.01 Компьютерные системы и комплексы.

1.2. Место учебной дисциплины в структуре образовательной программы: Учебная дисциплина «Основы алгоритмизации и программирования» принадлежит к общепрофессиональному циклу, изучается в 5 семестре.

1.3. Цели и задачи учебной дисциплины - требования к результатам освоения учебной дисциплины:

В результате освоения учебной дисциплины обучающийся должен уметь:

- разрабатывать и анализировать алгоритмы для решения поставленных задач;
- определять сложность алгоритмов;
- реализовывать типовые алгоритмы в виде программ на актуальных языках программирования;
- использовать средства проектирования для создания и графического отображения алгоритмов;
 - оформлять код программ в соответствии со стандартом кодирования;
 - выполнять проверку, отладку кода программы.

В результате освоения дисциплины обучающийся должен знать:

- понятие алгоритмизации, свойства алгоритмов, общие принципы построения алгоритмов, основные алгоритмические конструкции;
 - классификация языков программирования;
 - понятие системы программирования;
 - основные элементы языка, структура программы;
 - методы реализации типовых алгоритмов;
 - операторы и операции, управляющие структуры, структуры данных, классы памяти;
 - понятие подпрограммы, библиотеки подпрограмм;
- объектно-ориентированная модель программирования, основные принципы объектно-ориентированного программирования на примере алгоритмического языка: понятие классов и объектов, их свойств и методов, инкапсуляции и полиморфизма, наследования и переопределения.

1.4. Компетенции формируемые в результате освоения дисциплины:

Общие	Показатели оценки результата	
компетенции		
OK 1	Выбирать способы решения задач профессиональной деятельности	
	применительно к различным контекстам.	
OK 2	Использовать современные средства поиска, анализа и интерпретации	
	информации, и информационные технологии для выполнения задач	
	профессиональной деятельности.	
Профессиональные	Показатели оценки результата	
компетенции		
ПК 2.1	Проектировать, разрабатывать и отлаживать программный код модулей	
	управляющих программ.	
ПК 2.2	Владеть методами командной разработки программных продуктов.	

1.5. Рекомендуемое количество часов на освоение рабочей программы учебной дисциплины:

максимальной учебной нагрузки обучающегося 78 часов, в том числе: в форме практической подготовки 34 часа; обязательной аудиторной учебной нагрузки обучающегося 60 часов; самостоятельной работы обучающегося - часа; промежуточная аттестация 18 часов.

2. Структура и содержание учебной дисциплины 2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов	
Максимальная учебная нагрузка (всего)	78	
в т.ч. в форме практической подготовки	34	
Обязательная аудиторная учебная нагрузка (всего)	60	
в том числе:		
лекции	24	
лабораторные занятия	36	
практические занятия (не предусмотрены)	-	
контрольные работы (не предусмотрены)	-	
курсовая работа (проект) (не предусмотрены)	-	
Самостоятельная работа обучающегося (всего) (не предусмотрены)		
Промежуточная аттестация в форме экзамена в 5 семестре		

2.2. Тематический план и содержание учебной дисциплины ОП.06 Основы алгоритмизации и программирования

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в ча сах	Уровень освоения
1	2	3	4
Раздел 1. Основы			
алгоритмизации			
Тема 1.1. Понятие	Содержание учебного материала		2, 3
алгоритма и его	1. Понятие алгоритма. Свойства и виды алгоритмов	2	
свойства	2. Способы описания алгоритмов: псевдокоды. Блок-схема: основные элементы,		
	правила составления. Стандарты графического оформления алгоритмов.		
	3. Базовые алгоритмические конструкции: линейная, разветвляющаяся, циклическая.		
	Критерии «хорошего» алгоритма.		-
	Лабораторные занятия	2	
	Составление и оформление блок-схем простых алгоритмов.	2	
	Практические занятия (не предусмотрены)		
	Контрольные работы (не предусмотрены)		
	Самостоятельная работа обучающихся (не предусмотрены)		
Тема 1.2. Методы	Содержание учебного материала		2
разработки алгоритмов	1. Основные методы и этапы проектирования алгоритмов: постановка задачи, математическое описание — математическая модель. Нисходящее, модульное и	2	
	восходящее проектирование.		
	2. Эффективность и сложность алгоритма, их практическая значимость.		
	3. Алгоритмы поиска. Алгоритмы сортировки. Вложенные циклы. Вспомогательные	2	
	алгоритмы.		
	4. Различные комбинации алгоритмических конструкций. Тестовые данные.		
	Алгоритм Евклида. Алгоритмы решения нелинейных и линейных уравнений.		
	Декомпозиция алгоритма.		
	Лабораторные занятия		
	Проектирование и оформление алгоритмов сортировки.	2	
	Проектирование и оформление алгоритмов поиска.	2]

	Проектирование и оформление сложных алгоритмов.	2	
	Практические занятия (не предусмотрены)		
	Контрольные работы (не предусмотрены)		
	Самостоятельная работа обучающихся (не предусмотрены)		
Раздел 2. Основы			
программирования			
Тема 2.1. Базовые	Содержание учебного материала		2
понятия	1. Классификация и генеалогия актуальных языков программирования. Понятие	2	
программирования	системы программирования.		
	2. Основные элементы языка. Структура типовой программы. Особенности		
	актуальных сред программирования		
	Лабораторные занятия		
	Изучение инструментария среды программирования.	2 2	
	Подготовка структуры программы в среде программирования.	2	
	Практические занятия (не предусмотрены)		
	Контрольные работы (не предусмотрены)		
	Самостоятельная работа обучающихся (не предусмотрены)		
Тема 2.2.	Содержание учебного материала		2
Программная	1. Методы реализации типовых алгоритмов. Переменные: определение, правила	2	
реализация	именования. Типы данных: значимые и ссылочные. Объявление и инициализация		
алгоритмов	переменных. Область действия и время существования переменных. Константы:		
	определение, виды и правила записи в программе.		
	2. Операторы и операции. Понятие выражения. Математические операторы.		
	Старшинство операторов. Математические функции (класс Math). Ввод – вывод		
	данных. Операторы присваивания.		
	3. Операторы отношения. Проверка простых и сложных условий. Вложенные	2	
	условные операторы. Оператор выбора. Операторы перехода.		
	4. Операторы цикла. Стандартные операции при работе с циклическими		
	алгоритмами. Принудительный выход из цикла.		
	5. Массивы: определение, виды. Объявление одномерного массива. Варианты		
	инициализации. Ввод и вывод одномерных массивов. Стандартные операции для	2	
	работы с массивами. Обработка одномерных и двумерных массивов.		

I			
	6. Управляющие структуры. Понятие потока. Механизм буферизации. Классы		
	памяти. Доступ к файлам.		
	7. Понятие подпрограммы, библиотеки подпрограмм. Библиотеки среды разработки.		
	Лабораторные занятия		
	Реализация простых циклических алгоритмов.	2	
	Реализация алгоритмов обработки одномерных массивов.	2	
	Реализация алгоритмов обработки двумерных массивов.	2 2	
	Реализация алгоритмов обработки текстовых данных.	2	
	Реализация сложных алгоритмов поиска и ввода-вывода.	2	
	Практические занятия (не предусмотрены)		
	Контрольные работы (не предусмотрены)		
	Самостоятельная работа обучающихся (не предусмотрены)		
Раздел 3. Основы			
объектно-			
ориентированного			
программирования			
Тема 3.1. Основные	Содержание учебного материала		2, 3
понятия объектно-	1. Понятие класса и объекта. Характеристики объекта: поля, свойства, методы,	2	
ориентированного	события. Основные принципы объектно-ориентированного программирования:		
программирования	наследование, полиморфизм, инкапсуляция.		
	2. Общая форма определения класса.		
	3. Метод: понятие, правила записи. Правило триединого соответствия параметров и	2	
	аргументов: по количеству, типам и по порядку следования.		
	4. Инкапсуляция как управление доступом к данным. Свойства класса: понятие,		
	виды, правила записи. Наследование и полиморфизм.		
	5. Иерархия классов: понятие, преимущества.	2	
	6. Интерфейсы: назначение, правила написания.		
	Лабораторные занятия	2	
	Создание простейших классов.	2 2	
	Создание классов, иерархически связанных между собой.	2	
	Практические занятия (не предусмотрены)		
1			
	Контрольные работы (не предусмотрены)		

	Самостоятельная работа обучающихся (не предусмотрены)		
Тема 3.2.	Содержание учебного материала		2
Реализация методов	1. Модификаторы доступа к элементам класса. Переменные ссылочного типа и	2	
объектно-	присваивание. Побочные эффекты множественных ссылок.		
ориентированного	2. Методы классов. Вызов метода. Передача параметров по значению. Создание		
программирования	методов, возвращающих значения. Способы размещения методов. Конструкторы.		
	3. Синтаксис наследования. Скрытие и перекрытие методов.	2	
	4. Способы реализации интерфейсов. Работа с объектами через интерфейсы.		
	5. Обработка события: автоматическое создание обработчиков.		
	Лабораторные занятия		
	Создание классов для обработки массива данных.	2	
	Создание классов для вычисления математических выражений.	2	
	Разработка проектов с обработкой событий.	2	
	Практические занятия (не предусмотрены)		
	Контрольные работы (не предусмотрены)		
	Самостоятельная работа обучающихся (не предусмотрены)		
Итого за 5 семестр		60	
Самостоятельная работа		-	
Промежуточная аттестация в форме экзамена		18	
Всего:		78	

Для характеристики уровня освоения учебного материала используются следующие обозначения:

- 1. ознакомительный (узнавание ранее изученных объектов, свойств);
- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством);
- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. Условия реализации программы учебной дисциплины

3.1. Требования к минимальному материально-техническому обеспечению

Лаборатория «Прикладного программирования»: автоматизированное рабочее место преподавателя с доступом в интернет и программным обеспечением общего и профессионального назначения; автоматизированные рабочие места обучающихся с программным обеспечением общего и профессионального назначения; проектор, экран/маркерная доска.

Имеется необходимый комплект лицензионного программного обеспечения: Операционная система Microsoft Windows Профессиональная, Microsoft Office Standard 2013.

Pascal, IDE Lazarus.

3.2. Информационное обеспечение обучения.

Перечень учебных изданий, интернет-ресурсов, дополнительной литературы.

Основные источники:

- 1. Волобуева, Т. В. Информатика. Основы алгоритмизации: учебное пособие / Т. В. Волобуева. Воронеж: Воронежский государственный технический университет, ЭБС АСВ, 2019. 73 с. ISBN 978-5-7731-0740-8. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/93316.html
- 2. Колокольникова, А.И. Практикум по информатике: основы алгоритмизации и программирования: [16+] / А.И. Колокольникова. Москва; Берлин: Директ-Медиа, 2019. 424 с.: ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php? page=book&id=560695
- 3. Тюльпинова, Н. В. Технология алгоритмизации и программирования на языке Pascal: учебное пособие / Н. В. Тюльпинова. Саратов: Вузовское образование, 2019. 244 с. ISBN 978-5-4487-0471-0. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/80540.html.

Дополнительные источники:

- 1. Волобуева, Т. В. Информатика. Основы программирования на языке Pascal: учебное пособие / Т. В. Волобуева. Воронеж: Воронежский государственный технический университет, ЭБС АСВ, 2019. 93 с. ISBN 978-5-7731-0756-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/93317.html
- 2. Нагаева, И.А. Алгоритмизация и программирование. Практикум: учебное пособие: [12+] / И.А. Нагаева, И.А. Кузнецов. Москва; Берлин: Директ-Медиа, 2019. 168 с.: ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php? page=book&id=570287
- 3. Тюльпинова, Н. В. Алгоритмизация и программирование: учебное пособие / Н. В. Тюльпинова. Саратов: Вузовское образование, 2019. 200 с. ISBN 978-5-4487-0470-3. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/80539.html.

Интернет источники:

- 1. http://delphiexpert.ru/ уроки, видеокурсы по программированию в среде Free Pascal и Delphi.
- 2. https://www.sites.google.com/site/ifizmat/prog/lazarus лабораторные занятия по Lazarus.
- 3. http://intuit.valrkl.ru/course-708/index.html#ID.1.lecture Программирование на Free Pascal и Lazarus.

4. Контроль и оценка результатов освоения учебной дисциплины

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения лабораторных занятий.

Результаты обучения

(освоенные умения, усвоенные знания)

- В результате освоения учебной дисциплины обучающийся должен уметь:
- разрабатывать и анализировать алгоритмы для решения поставленных задач;
- определять сложность алгоритмов;
- реализовывать типовые алгоритмы в виде программ на актуальных языках программирования;
- использовать средства проектирования для создания и графического отображения алгоритмов;
- оформлять код программ в соответствии со стандартом кодирования;
- выполнять проверку, отладку кода программы.
- В результате освоения дисциплины обучающийся должен знать:
- понятие алгоритмизации, свойства алгоритмов, общие принципы построения алгоритмов, основные алгоритмические конструкции;
- классификация языков программирования;
- понятие системы программирования;
- основные элементы языка, структура программы;
- методы реализации типовых алгоритмов;
- операторы и операции, управляющие структуры, структуры данных, классы памяти;
- понятие подпрограммы, библиотеки подпрограмм;
- объектно-ориентированная модель программирования, основные принципы объектно-ориентированного программирования на примере алгоритмического языка: понятие классов и объектов, их свойств и методов, инкапсуляции и полиморфизма, наследования и переопределения.

Формы и методы контроля и оценки

Экспертное наблюдение за ходом выполнения лабораторных занятий.

Оценка результатов выполнения лабораторных занятий.