Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Шебунун Пристрем НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ Должность: Директор Пятигорского института (филиал) Северо-Кавказского федерального университета

Дата подпис Федеральное учреждение образовательное учреждение Уникальный программный ключ: высшего образования

d74ce93cd40e39275c3ba2f58486412a1c8ef96f «СЕВЕРО - КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт сервиса, туризма и дизайна (филиал) в г. Пятигорске

Методические указания по выполнению практических работ по дисциплине «Физика»

СОДЕРЖАНИЕ	Стр
Введение	3
Тематический план практических занятий	5
Описание практических занятий	6
Справочные материалы по физике.	129
Справочные материалы по математике.	136
Учебно - методическое и информационное обеспечение дисциплины.	140

Введение

Дисциплина «Физика» относится к вариативной части. Ее освоение происходит в 1 - 2 семестрах ОП ВО подготовки бакалавра направления 08.03.01 «Строительство». Изучение дисциплины «Физика» является важной составной частью естественнонаучного образования в повышении качества подготовки бакалавров данного направления. Дисциплина «Физика» базируется на знаниях, полученных в рамках школьного курса физики или соответствующих дисциплин среднего профессионального образования.

Целью освоения дисциплины «Физика» является формирование набора профессиональных и общекультурных компетенций будущего бакалавра по направлению 08.03.01 «Строительство».

Задачами освоения дисциплины «Физика» являются:

- изучение законов окружающего мира в их взаимосвязи; овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач; формирование у студентов основ естественнонаучной картины мира.

В совокупности с другими дисциплинами базовой части ФГОС ВО дисциплина «Физика» направлена на формирование следующих компетенций бакалавра:

Индекс	Формулировка:
	Способен решать задачи профессиональной деятельности на
ОПК-1	основе ис-пользования теоретических и практических основ
	естественных и техниче-ских наук, а также математического
	аппарата

В результате освоения содержания дисциплины «Физика» студент должен:

ЗНАТЬ	основные	физические	явления	И	законы	механ	ики,
	электротехн	ики, теплотехн	ники, оптикі	и и	ядерной	физики и	ИХ

	математическое описание; методы анализа физических явлений в
	технических устройствах и системах; Методы решения практических задач исследования и моделирования физических и химических явлений и процессов в
	своей предметной области;
УМЕТЬ	объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; работать с приборами и оборудованием физической лаборатории; решать практические задачи исследования и моделирования физических и химических явлений и процессов в своей предметной области; пользоваться методами анализа физических явлений в технических устройствах и системах
ВЛАДЕТЬ	естественнонаучной культурой в области физики, как частью общечеловеческой и профессиональной культуры; навыками использования базовых знаний о строении различных классов физических объектов для понимания свойств материалов и механизмов процессов, протекающих в природе; навыками правильной эксплуатации основных приборов и оборудования физической лаборатории; навыками обработки и интерпретирования результатов эксперимента; методикой решения практических задач исследования и моделирования математических, физических и химических задач в своей предметной области, методами анализа физи-ческих явлений в технических устройствах и системах.

Методические указания по выполнению практических работ по дисциплине «Физика» составлены в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования, рабочим учебным планом и рабочей программой дисциплины «Физика».

Тематический план практических занятий

	1 ематический план практических занятий			
		Обьем		
NC.	TT			
№	Наименование тем практических занятий	(астр.		
		/акад.)		
1 семестр				
	Раздел 1. Механика			
1	Практическое занятие 1. (Тема 1. Кинематика и динамика	1,5		
	материальной точки).	1,0		
2	Практическое занятие 2. (Тема 2. Законы сохранения).	1,5		
3	Практическое занятие 3. (Тема 3. Элементы механики	1,5		
	сплошных сред. Силы в природе).	,-		
	Раздел 2. Основы молекулярно-кинетической теории и			
	термодинамика			
4	Практическое занятие 4. (Тема 4. Основы молекулярно-	1,5		
	кинетической теории).	•		
5	Практическое занятие 5. (Тема 5. Основы термодинамики).	1,5		
6	Практическое занятие 6. (Тема 6. Реальные газы и жидкости).	1,5		
	Раздел 3. Электричество.			
7	Практическое занятие 7. (Тема 7. Электростатика).	1,5		
8	Практическое занятие 8. (Тема 8. Законы постоянного тока).	1,5		
9	Практическое занятие 9. (Тема 9. Классическая теория	1,5		
проводимости металлов).				
	Итого за 1 семестр 2 семестр	13,5		
P	аздел 4. Магнетизм. Электромагнитные колебания и волны.			
10	Практическое занятие 10. (Тема 10. Магнитное поле).	1,5		
11	Практическое занятие 11. (Тема 11. Явление	1,5		
	электромагнитной индукции).	•		
12	Практическое занятие 12. (Тема 12 Электромагнитные			
	колебания в колебательном контуре)			
Pa	вдел 5. Волновая и квантовая оптика. Теория атома водорода			
	по Бору.			
13	Практическое занятие 13. (Тема 13. Геометрическая оптика	1,5		
	Волновая оптика).			
14	Практическое занятие 14. (Тема 14. Тепловое излучение).	1,5		
15	Практическое занятие 15 (Тема 15. Квантовая природа	1,5		
	излучения. Теория атома водорода по Бору).			
	аздел 6. Элементы квантовой механики и ядерной физики.			
16	Практическое занятие 16. (Тема 16. Квантовая механика.	1,5		
	Элементы современной физики атомов и молекул).			
17	Практическое занятие 17. (Тема 17. Основы физики атомного	1,5		
	ядра).	10		
	Итого за 2 семестр	12		
	5			

Итого 25,5

Описание практических занятий

Раздел 1. Механика.

Практическое занятие 1.

Тема 1. Кинематика и динамика материальной точки. Кинематика поступательного и вращательного движения материальной точки. Законы динамики. Закон сохранения импульса.

Цель занятия: Изучить закономерности движения материальной точки. Рассмотреть законы динамики материальной точки.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных закономерностей движения материальной точки; умения – применять полученные знания при решении задач

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать законы кинематики поступательного и вращательного движения в их взаимосвязи, формировать навыки применения закономерностей движения материальной точки к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того, она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме

Скорости:

средняя
$$\vec{\upsilon}_{\rm cp} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{t_2 - t_1},$$
 средняя путевая
$$\vec{\upsilon}_{\rm cp} = \frac{\Delta s}{\Delta t} = \frac{s_2 - s_1}{t_2 - t_1},$$
 мгновенная
$$\vec{\upsilon} = \frac{d\vec{r}}{dt} = \frac{ds}{dt} \vec{\tau}$$

где \vec{r} — радиус-вектор материальной точки, $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$ - вектор перемещения, s — расстояние вдоль траектории движения, $\Delta s = s_2 - s_1$ — пройденный путь, t — время, $\Delta t = t_2$ — t_1 — время движения, $\vec{\tau}$ — единичный вектор, касательный к траектории.

Ускорения:

среднее
$$\vec{a}_{\text{ср}} = \frac{\Delta \vec{v}}{\Delta t};$$
 мгновенное
$$\vec{a} = \frac{d\vec{v}}{dt};$$
 тангенциальное
$$\vec{a}_{\tau} = \frac{dv}{dt}\vec{\tau};$$
 нормальное
$$\vec{a}_{\text{n}} = \frac{v^2}{R}\vec{n};$$
 полное
$$\vec{a} = \vec{a}_{\tau} + \vec{a}_{\text{n}}, \quad a = \sqrt{a_{\tau}^2 + a_{\text{n}}^2},$$

где R – радиус кривизны траектории, \vec{n} – единичный вектор главной нормали.

Скорость угловая:

средняя
$$\omega_{\rm cp} = \frac{\Delta \varphi}{\Delta t};$$
 мгновенная
$$\omega = \frac{d\varphi}{dt},$$

где ϕ – угловое перемещение.

Ускорение угловое:

среднее
$$\varepsilon_{\rm cp} = \frac{\Delta \omega}{\Delta t};$$
 мгновенное
$$\varepsilon = \frac{d\omega}{dt}.$$

Связь между линейными и угловыми величинами

$$s = \varphi R$$
, $\upsilon = \omega R$,
 $a_{\tau} = \varepsilon R$, $a_{n} = \omega^{2} R$.

Если точка движется равномерно:

$$nocmynameльно$$
 $s = \upsilon t$;

вращательно
$$\varphi = \omega \cdot t$$
.

Если точка движется равноускоренно:

$$v = v_0 + at$$
; $s = v_0 t + \frac{at^2}{2}$;

$$\omega = \omega_0 + \varepsilon t$$
; $\varphi = \omega_0 t + \frac{\varepsilon t^2}{2}$.

Импульс (количество движения) материальной точки где m – масса материальной точки, $\vec{\upsilon}$ – её скорость.

 $\vec{P} = m\vec{\upsilon}$,

Основное уравнение динамики материальной точки

(второй закон Ньютона)

$$\vec{F} = \frac{d\vec{P}}{dt}$$
.

При m = const, второй закон Ньютона имеет вид $\vec{F} = m\vec{a}$.

Закон сохранения импульса для изолированной системы

$$\sum \vec{P}_{i} = \sum m_{i} \vec{v}_{i} = const.$$

Радиус-вектор центра масс

$$\vec{r}_{\rm c} = \frac{\sum m_{\rm i} \vec{r}_{\rm i}}{\sum m_{\rm i}}.$$

Скорость частиц после центрального столкновения:

упругого

неупругого

$$\vec{u}_{1} = \left\{ -\vec{v}_{1} + 2\frac{m_{1}\vec{v}_{1} + m_{2}\vec{v}_{2}}{m_{1} + m_{2}}, \right.$$

$$\vec{u}_{2} = \left\{ -\vec{v}_{2} + 2\frac{m_{1}\vec{v}_{1} + m_{2}\vec{v}_{2}}{m_{1} + m_{2}}; \right.$$

$$\vec{u}_{1} = \vec{u}_{2} = \frac{m_{1}\vec{v}_{1} + m_{2}\vec{v}_{2}}{m_{1} + m_{2}},$$

где \vec{v}_1 и \vec{v}_2 – скорости частиц до столкновения, m_1 и m_2 – массы частиц.

Сила сухого трения скольжения

$$F_{\rm rp} = \mu F_{\rm n}$$

где μ – коэффициент трения, $F_{\rm n}$ – сила нормального давления.

Сила упругости

$$F_{\text{ymp}} = -k\Delta l$$
,

где k – коэффициент упругости (жесткость), Δl - изменение длины.

Сила гравитационного взаимодействия

$$F_{\rm rp} = G \frac{m_1 m_2}{r^2},$$

где m_1 и m_2 — массы частиц, G — гравитационная постоянная, r — расстояние между частицами.

Потенциальные энергии:

$$\Pi = \frac{k(\Delta l)^2}{2};$$

гравитационного взаимодействия двух частиц

$$\Pi = -G \frac{m_1 m_2}{r};$$

тела в однородном гравитационном поле

$$\Pi = mgh$$
,

где g — напряженность гравитационного поля (ускорение свободного падения), h — расстояние от нулевого уровня отсчета (обычно - поверхности Земли).

Напряженность гравитационного поля Земли

$$g = \frac{GM_3}{\left(R_3 + h\right)^2},$$

где M_3 – масса Земли, R_3 – радиус Земли, h – расстояние от поверхности Земли.

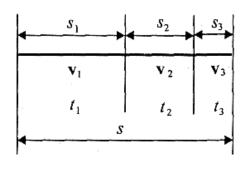
Потенциал гравитационного поля Земли

$$\varphi = -\frac{GM_3}{R_3 + h}.$$

Примеры решения задач

Задача 1. Студент проехал половину пути на велосипеде со скоростью $\upsilon_1 = 16$ км/ч. Далее половину оставшегося времени он ехал со скоростью $\upsilon_2 = 12$ км/ч, а затем до конца пути шел пешком со скоростью $\upsilon_3 = 5$ км/ч. Определите среднюю скорость движения студента на всем пути.

Решение:



Длина первой части части пути $s_2 = v_2 t_2$,

пути $s_1 = v_1 t_1$, второй третьей части, $s_3 = v_3 t_3$.

По условию, $s_1 = s_2 + s_3$, а время $t_2 = t_3$. Средняя скорость

$$\langle \upsilon \rangle = \frac{s_1 + s_2 + s_3}{t_1 + t_2 + t_3},$$

так как s_1 - половина пути, то весь путь равен $2s_I$, время $t_I = s_I/v_I$, оставшееся время $t_2 + t_3 =$, тогда

$$\langle \upsilon \rangle = \frac{2s_1}{\frac{s_1}{\upsilon_1} + \frac{2s_1}{\upsilon_2 + \upsilon_3}} = \frac{2\upsilon_1(\upsilon_2 + \upsilon_3)}{2\upsilon_1 + \upsilon_2 + \upsilon_3}.$$

Задача 2. Вертикально падающее тело последние 2 метра пролетело за 0,3 с. Определить, с какой высоты падало тело?

Дано:

$$h = 2M$$

 $t_2 = 0,3c$
 $H = ?$

Высоту H падения тела (без начальной скорости) можно определить по формуле $H = \frac{gt^2}{2}$. Здесь t – полное время падения. Очевидно $t = t_1 + t_2$, где t_1 – время прохождения первого участка; t_2 – время прохождения последних 2-х метров пути. Запишем уравнение движения для двух последних метров пути, считая движение равноускоренным:

$$h = v_1 t_2 + \frac{g t_2^2}{2},$$

где v_1 – скорость, с которой тело «входит» в этот участок пути.

Следовательно,
$$\upsilon_1 = \frac{h - \frac{gt_2^2}{2}}{t_2} = \frac{h}{t_2} - \frac{gt_2}{2} \ . \tag{1}$$

Первый участок пути тело проходит без начальной скорости, т.е. $v_0 = 0$, а

так как
$$g = \frac{\upsilon_1 - \upsilon_0}{t_1}$$
, то $t_1 = \frac{\upsilon_1}{g}$. Учитывая (1), получим $t_1 = \frac{h}{gt_2} - \frac{t_2}{2}$.

Таким образом, общее время движения тела $t = t_1 + t_2$ равно

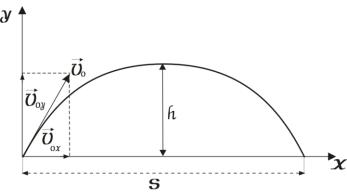
$$t = \frac{h}{gt_2} - \frac{t_2}{2} + t_2 = \frac{h}{gt_2} + \frac{t_2}{2}$$
 (2)

Подставляя (2) в формулу для H, окончательно, получим

$$H = \frac{g}{2} \left(\frac{h}{gt_2} + \frac{t_2}{2} \right)^2 = \frac{10}{2} \cdot \left(\frac{2}{10 \cdot 0.3} + \frac{0.3}{2} \right)^2 \approx 3.33 \text{ m.}$$

Задача 3. Тело брошено с начальной скоростью $v_0 = 20$ м/с под углом $\alpha = 30^\circ$ к горизонту. Определить максимальную высоту подъема, дальность полета, а так же тангенциальное и нормальное ускорения, радиус кривизны траектории в начальный момент времени.

Дано:
$$v_0 = 20 \text{ м/c}$$
 $\alpha = 30^{\circ}$ $h = ?$ $S = ?$ $a_{\tau} = ?$ $R = ?$



Воспользуемся принципом суперпозиции движений: движение тела представим как два независимых движения вдоль осей координат X и Y. Из треугольника скоростей найдем начальные скорости

$$v_{\rm ox} = v_{\rm o} \cdot \cos \alpha \quad , \quad v_{\rm oy} = v_{\rm o} \cdot \sin \alpha \quad .$$
 (1)

Вдоль оси X движение равномерное (при отсутствии сопротивления движению, других сил, действующих вдоль оси X, нет). Поэтому v_x не изменяется, то есть $v_x = v_{ox}$.

Вдоль оси Y движение — равноускоренное за счет силы тяготения. При подъеме на высоту h скорость v_y изменяется со временем по закону: $v_y = v_{oy} - gt$. Считая, что в максимальной точке подъема $v_y = 0$, найдем время подъема t_1 : $v_{oy} = gt_1$. Учитывая (1), получим

$$t_1 = \frac{\upsilon_0 \sin \alpha}{g} \tag{2}$$

Из уравнения движения вдоль оси у найдем высоту подъема

$$h = v_{\text{oy}} \cdot t_1 - \frac{gt_1^2}{2} = v_0 \cdot \sin \alpha \frac{v_0 \sin \alpha}{g} - \frac{gv_0^2 \sin^2 \alpha}{2g^2} = \frac{v_0^2 \sin^2 \alpha}{2g} = 5 \text{ M}.$$

Из уравнения равномерного движения вдоль оси X, найдем дальность полета S:

$$S = \nu_{ox} \cdot t = \nu_0 \cdot \cos \alpha \cdot t,$$

где t- общее время движения, из соображений симметрии, равное удвоенному времени подъема, т.е. t=2 t₁. Тогда

$$S = \nu_0 \cdot \cos \alpha \cdot 2t_1 = 2\nu_0 \cos \alpha \cdot \nu_0 \frac{\sin \alpha}{g} = \frac{\nu_0^2 \sin 2\alpha}{g} = 34,6 \text{ m}.$$

Тангенциальное ускорение, по определению, $a_{\tau} = \frac{dv}{dt}$, а так как скорость

$$\upsilon = \sqrt{\upsilon_{\rm x}^2 + \upsilon_{\rm y}^2}$$
, и $\upsilon_{\rm x} = \upsilon_{\rm ox}$, а $\upsilon_{\rm y} = \upsilon_{\rm oy} - gt$, значит $\upsilon = \sqrt{\upsilon_{\rm ox}^2 + \left(\upsilon_{\rm oy} - gt\right)^2}$.

Следовательно
$$a_{\tau} = \frac{d\upsilon}{dt} = \frac{d\sqrt{\upsilon_{\rm ox}^2 + \left(\upsilon_{\rm oy} - gt\right)^2}}{dt} = \frac{\left(\upsilon_{\rm oy} - gt\right) \cdot g}{\sqrt{\left(\upsilon_{\rm oy} - gt\right)^2 + \upsilon_{\rm ox}^2}}$$

В начальный момент времени t=0,

$$a_{\tau} = \frac{\upsilon_{\text{oy}} \cdot g}{\sqrt{\upsilon_{\text{ox}}^2 + \upsilon_{\text{oy}}^2}} = \frac{\upsilon_{\text{oy}} \cdot g}{\upsilon_0} = \frac{\upsilon_0 \cdot \sin \alpha \cdot g}{\upsilon_0} = g \cdot \sin \alpha = 5 \text{ m/c}^2.$$

Полное ускорение движения тела, очевидно, равно ускорению свободного падения g. Поэтому $a = \sqrt{a_n^2 + a_\tau^2} = g$.

Откуда $a_n = \sqrt{g^2 - a_\tau^2} = 8,66 \,\mathrm{m/c^2}$.

По определению, $a_n = \frac{v^2}{R}$. Следовательно $R = \frac{v^2}{a} = 46,2$ м.

Задача 4. Две материальные точки движутся согласно уравнениям $x_1 = A_1 t + B_1 t^2 + C_1 t^3$, $x_2 = A_2 t + B_2 t^2 + C_2 t^3$, где $A_1 = 4$ м/с, $B_1 = 8$ м/с², $C_1 = -16$ м/с³, $A_2 = 2$ м/c, $B_2 = -4$ м/c², $C_2 = 1$ м/c³. В какой момент времени t ускорение этих точек будут одинаковы? Найти скорости υ_1 и υ_2 точек в этот момент времени.

Дано:

$$x_1 = A_1 t + B_1 t^2 + C_1 t^3$$

 $x_2 = A_2 t + B_2 t^2 + C_2 t^3$
 $A_1 = 4 \text{ m/c}.$

$$A_2 = 2 \text{ M/c}.$$

 $B_1 = 8 \text{ m/c}^2$

$$B_2 = -4 \text{ M/c}^2$$
.

$$C_1 = -16 \text{ m/c}^3$$

$$C_2 = 1 \text{ m/c}^3$$

$$t = ? v_1 = ? v_2 = ?$$

Для одномерного движения ускорение есть вторая производная от координаты, то есть $a = d^2x/dt^2$ или первая производная от скорости то есть $a = d\upsilon/dt$.

Поэтому надо, вначале определить скорости точек:

$$v_1 = \frac{dx_1}{dt} = (A_1 t + B_1 t^2 + C_1 t^3)' = A_1 + 2B_1 t + 3C_1 t^2$$
 (1)

$$\upsilon_2 = \frac{dx_2}{dt} = (A_2t + B_2t^2 + C_2t^3)' = A_2 + 2B_2t + 3C_2t^2$$
 (2)

Теперь найдем ускорения.

$$a_1 = \frac{dv_1}{dt} = (A_1 + 2B_1t + 3C_1t^2)' = 2B_1 + 6C_1t$$
 (3)

$$a_2 = \frac{dv_2}{dt} = (A_2 + 2B_2t + 3C_2t^2)' = 2B_2 + 6C_2t$$
 (4)

Приравняв (3) и (4), найдем *t*:

$$t = \frac{B_1 - B_2}{3(C_2 - C_1)} = \frac{8 - (-4)}{3(1 - (-16))} = 0,235 \text{ c.}$$

Теперь подставим это значение t в (1) и (2):

$$\upsilon_1 = 4 + 2 \cdot 8 \cdot 0,235 + 3 \cdot (-16) \cdot (0,235)^2 = 5,1 \text{ m/c},$$

 $\upsilon_2 = 2 + 2 \cdot (-4) \cdot 0,235 + 3 \cdot 1 \cdot (0,235)^2 = 0,286 \text{ m/c}.$

Задача 5. Материальная точка движется на плоскости согласно уравнениям:

$$\begin{cases} x = 4\cos\left(\frac{\pi}{6}t\right); & x, y - \text{ в метрах,} \\ y = 3\sin\left(\frac{\pi}{6}t\right); & t - \text{ в секундах.} \end{cases}$$

Найти: 1) уравнение траектории;

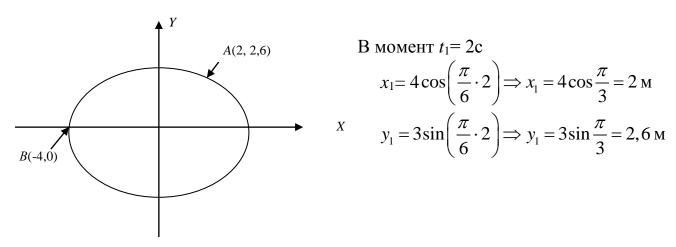
- 2) координаты точки;
- 3) полную скорость;
- 4) полное ускорение;
- 5) тангенциальное и нормальное ускорение;
- 6) радиус кривизны траектории в моменты времени t_1 =2 с и t_2 =6 с.

Решение:

1. Для нахождения уравнения траектории (зависимости одной координаты от другой) исключим из уравнений переменную величину *t*:

$$\begin{cases} \frac{x}{4} = \cos\left(\frac{\pi}{6}t\right) \\ \frac{y}{3} = \sin\left(\frac{\pi}{6}t\right) \end{cases} \Longrightarrow \begin{cases} \frac{x^2}{4^2} = \cos^2\left(\frac{\pi}{6}t\right) \\ \frac{y^2}{3^2} = \sin^2\left(\frac{\pi}{6}t\right) \end{cases} \Longrightarrow \frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$$

Это уравнение эллипса с полуосями a = 4 м; b = 3 м.



B MOMEHT $t_2 = 6$ c: $x_2 = 4\cos(\pi) = -4$ M, $y_2 = 3\sin(\pi) = 0$ M.

Таким образом, в момент времени $t_1 = 0$ координаты точки: A(x,y) = (2, 2, 6); в момент времени $t_2 = 6$ с координаты точки: B(x,y) = (-4, 0).

2. Для нахождения полной скорости найдем v_x и v_y в моменты $t_1 = 2$ с и $t_2 = 6$ с:

$$v_{x} = x' = \frac{dx}{dt} = \left(4\cos\frac{\pi}{6} \cdot t\right)' = -\frac{4\pi}{6}\sin\left(\frac{\pi}{6} \cdot t\right) = \frac{2}{3}\pi\sin\left(\frac{\pi}{6} \cdot t\right)$$

$$v_{y} = y' = \left(3\sin\left(\frac{\pi}{6} \cdot t\right)\right)' = \frac{3\pi}{6}\cos\left(\frac{\pi}{6} \cdot t\right) = \frac{1}{2}\pi\cos\left(\frac{\pi}{6} \cdot t\right)$$

$$v_{x1} = -\frac{4\pi}{6}\sin\left(\frac{\pi}{6} \cdot 2\right) = -\frac{4\pi}{6}\sin\left(\frac{\pi}{3}\right) = -1,81 \text{ m/c.}$$

$$v_{y1} = \frac{1}{2}\pi\cos\left(60^{\circ}\right) = 0,785 \text{ m/c.}$$

$$v_{\text{полн. 1}} = \sqrt{\left(-1,8\right)^{2} + \left(0.785\right)^{2}} = 1,98 \text{ m/c.}$$

Аналогично находим, что

$$v_{x2} = -\frac{4\pi}{6}\sin\left(\frac{\pi}{6} \cdot 6\right) = 0 \text{ m/c}, \quad v_{y2} = \frac{1}{2}\pi\cos\left(\pi\right) = -1,57 \text{ m/c}.$$

$$v_{\text{полн.}2} = 1,57 \text{ m/c}.$$

3. Для нахождения полного ускорения $a_{nолн}$ найдем a_x и a_y в моменты времени $t_1=2$ с и $t_2=6$ с:

$$a_{x} = v_{x}' = -\frac{4}{6^{2}} \pi^{2} \cos\left(\frac{\pi}{6} \cdot t\right), a_{y} = v_{y}' = -\frac{3}{6^{2}} \pi^{2} \sin\left(\frac{\pi}{6} \cdot t\right)$$

$$a_{x1} = -\frac{1}{9} \pi^{2} \cos\left(\frac{\pi}{6} \cdot 2\right) = -\frac{1}{9} \pi^{2} \cdot \cos\left(\frac{\pi}{3}\right) = -0,55 \text{ m/c}^{2}.$$

$$a_{y1} = -\frac{1}{12} \pi^{2} \sin\left(\frac{\pi}{6} \cdot 2\right) = -\frac{1}{12} \pi^{2} \sin\left(\frac{\pi}{3}\right) = -0,71 \text{ m/c}^{2}.$$

$$a_{\pi \text{полн.}1} = \sqrt{a_{x}^{2} + a_{y}^{2}} = 0,9 \text{ m/c}^{2}.$$

$$a_{x2} = -\frac{1}{9} \pi^{2} \cos\left(\frac{\pi}{6} \cdot 6\right) = -\frac{1}{9} \pi^{2} \cos(\pi) = 1,1 \text{ m/c}^{2}.$$

$$a_{y2} = -\frac{1}{12} \pi^{2} \sin(\pi) = 0 \text{ m/c}^{2}.$$

$$a_{\pi \text{полн.}2} = 1,1 \text{ m/c}^{2}.$$

4. Найдем нормальное (центростремительное) ускорение: $a_{\rm n} = \frac{v^2}{R}$,

тангенциальное ускорение $a_x = \frac{dv}{dt}$.

Найдем $v_{\text{полн.}}$

$$\upsilon_{\text{\tiny HOJIH}} = \sqrt{\upsilon_{\text{\tiny X}}^2 + \upsilon_{\text{\tiny Y}}^2} = \sqrt{\left(\frac{2}{3}\pi\sin\left(\frac{\pi}{6}\cdot t\right)\right)^2 + \left(\frac{1}{2}\pi\cos\left(\frac{\pi}{6}\cdot t\right)\right)^2} \Rightarrow
\Rightarrow a_{\tau} = \frac{d\upsilon}{dt} = \frac{\pi^2 \left(\frac{8}{9}\cos\left(\frac{\pi}{6}\cdot t\right)\sin\left(\frac{\pi}{6}\cdot t\right) - \frac{1}{2}\cos\left(\frac{\pi}{6}\cdot t\right)\sin\left(\frac{\pi}{6}\cdot t\right)\right)}{12\pi\sqrt{\frac{4}{9}\sin^2\left(\frac{\pi}{6}\cdot t\right) + \frac{1}{4}\cos^2\left(\frac{\pi}{6}\cdot t\right)}};$$

$$a_{\tau 1} = 0,22 \text{ m/c}^2.$$

Следовательно
$$a_{\rm n1} = \sqrt{a_{\rm полн}^2 - a_{\rm r1}^2} = \sqrt{0.9^2 - 0.22^2} = 0.87 \text{ м/c}^2.$$

T ак как $\upsilon_{\mbox{\tiny полн1}}$ = 1,98 м/с , то радиус кривизны в точке A равен

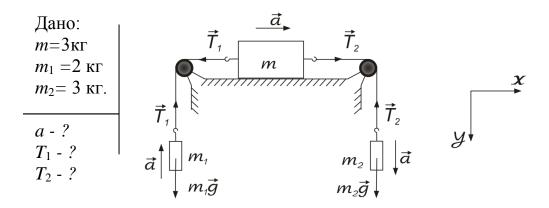
$$R_{\rm A} = \frac{\upsilon_{\rm l}^2}{a_{\rm nl}} = \frac{1,98^2}{0,81} 4,84 \,\mathrm{m}.$$

Аналогично:

$$a_{\tau 2} = \frac{25\pi \cos(\pi)\sin \pi}{12 \cdot 18\sqrt{\frac{4}{9}\sin^2(\pi) + \frac{1}{4}\cos^2(\pi)}} = 0.$$

Следовательно
$$a_{\rm n2}=a_2=1, {\rm 1M/c^2} \Longrightarrow R_{\rm B}=\frac{1,57^2}{1,1}=2,24\,{\rm M}\,.$$

Задача 6. На гладком столе лежит брусок массой 3 кг. К бруску привязаны два шнура, перекинутые через неподвижные блоки, прикрепленные к противоположным краям стола. К концам шнуров подвешены гири массами m_1 = 2 кг и m_2 = 3 кг. Найти ускорение a, с которым движется брусок и силу T натяжения каждого из шнуров. Массой блоков и трением пренебречь. Шнуры считать нерастяжимыми.



Распишем силы, действующие на тела. Выберем систему координат, как указано на рисунке (на груз m, лежащий на столе вообще-то действуют еще две силы: сила тяжести $m\vec{g}$ и сила реакции опоры \vec{N} . Но так как трением в задаче пренебрегается, то действие этих сил из рассмотрения мы исключаем).

Запишем второй закон Ньютона для каждого участвующего в движении тела:

$$\begin{cases} m_{1}\vec{a} = m_{1}\vec{g} + \vec{T}_{1} \\ m_{2}\vec{a} = m_{2}\vec{g} + \vec{T}_{2} \\ m\vec{a} = \vec{T}_{1} + \vec{T}_{2} \end{cases}$$

(Поскольку шнуры считаются нерастяжимыми, то все тела движутся с одинаковым ускорением a).

Выбираем направление ускорения, как указано на рисунке (по направлению часовой стрелки). Спроецируем систему уравнений на выбранные оси координат:

$$\begin{cases}
-m_{1}a = m_{1}g - T_{1} \\
m_{2}a = m_{2}g - T_{2} \\
ma = T_{2} - T_{1}
\end{cases}$$
(1)

Из второго уравнения (1) вычитаем первое:

$$(m_2 + m_1)a = (m_2 - m_1)g - (T_2 - T_1)$$

$$(m_2 + m_1)a = (m_2 - m_1)g - ma$$

 $(m_2 + m_1 + m)a = (m_2 - m_1)g$, тогда

$$a = \frac{m_2 - m_1}{m_2 + m_1 + m} g \tag{2}$$

Подставляем численные значения:

$$a = \frac{3-2}{3+2+3} 10 = \frac{10}{8} = 1,25 \text{ m/c}^2.$$

$$T_1 = m_1 g + m_1 a = m_1 (g+a) = 2(10+1,25) = 22,5 \text{ H},$$

$$T_2 = m_2 (g-a) = 3(10-1,25) = 26,2 \text{ H}.$$

Задача 7. Через блок, укрепленный на конце стола, перекинута нерастяжимая нить, к концам которой прикреплены грузы, один из которых ($m_1 = 400 \, \Gamma$) движется по поверхности стола, а другой ($m_2 = 600 \, \Gamma$) — вдоль вертикали вниз. Коэффициент f трения груза о стол равен 0,1. Считая нить и блок невесомыми, определить: 1) ускорение a, с которым движутся грузы; 2) силу натяжения T нити.

Решение.

Выбрав оси координат (рис), запишем для каждого груза уравнение движения (второй закон Ньютона) в проекциях на эти оси:

$$m_2 a = m_2 g - T$$

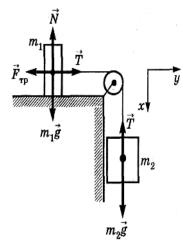
Учитывая, что

, получим систему уравнений:

$$\begin{cases} m_1 a = T - f m_1 g, \\ m_2 a = m_2 g - T, \end{cases}$$

откуда искомое ускорение:

$$a = \frac{(m_2 - f m_1)g}{m_1 + m_2}$$

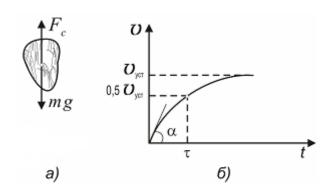


Силу натяжения нити найдем из второго уравнения системы:

$$T = m_2(g - a)$$

Вычисляя, получаем: 1) $a = 5,49 \text{ м/c}^2$; 2) T = 2,59 H.

Задача 8. При падении тела с большой высоты его скорость $v_{\text{уст}}$ при установившемся движении достигает 80 м/с. Определить время τ , в течение которого, начиная от момента начала падения, скорость становится равной $v_{\text{уст}}/2$. Силу сопротивления воздуха принять пропорциональной скорости тела.



Решение.

На падающее тело действуют две силы (рис. а): сила тяжести mg и сила сопротивления воздуха $F_{\rm c}$.

Сила сопротивления воздуха по условиям задачи пропорциональна скорости тела и противоположна ей по направлению:

$$\vec{F}_c = -k\vec{\upsilon}\,,\tag{1}$$

где k — коэффициент пропорциональности, зависящий от размеров, формы тела и от свойств окружающей среды.

Напишем уравнение движения тела в соответствии со вторым законом Ньютона в векторной форме: $m\frac{d\vec{v}}{dt} = m\vec{g} + \vec{F}_{\rm c}$. Заменив $\vec{F}_{\rm c}$ согласно (1), получим:

$$m\frac{d\vec{v}}{dt} = m\vec{g} - k\vec{v} \,. \tag{2}$$

Спроецируем все векторные величины на вертикально вниз направленную ось и напишем уравнение (2) для проекций:

$$m\frac{dv}{dt} = mg - kv$$
.

После разделения переменных получим

$$\frac{dv}{mg-kv}=\frac{dt}{m}.$$

Выполним интегрирование, учитывая, что при изменении времени от нуля до τ (искомое время) скорость возрастает от нуля до $\frac{1}{2}\nu_{\text{уст}}$ (рис. 1, б):

$$\int_{0}^{\frac{1}{2}\nu_{\text{yer}}} \frac{d\nu}{mg - k\nu} = \int_{0}^{\tau} \frac{dt}{m}; \quad -\frac{1}{k} \left| \ln(mg - k\nu) \right|_{0}^{\frac{1}{2}\nu_{\text{yer}}} = \frac{\tau}{m}.$$

Из полученного выражения найдем искомое время:

$$\tau = \frac{m}{k} \ln \frac{mg}{mg - \frac{1}{2}k\nu_{\text{ycr}}}$$
 (3)

Входящий сюда коэффициент пропорциональности k определим из следующих соображений. При установившемся движении (скорость постоянна) алгебраическая сумма проекций на вертикальную ось действующих на тело сил

равна нулю, т. е.
$$mg - k\upsilon_{\text{ycr}} = 0$$
, откуда $k = \frac{mg}{\upsilon_{\text{ycr}}}$.

Подставим найденное значение k в формулу (3):

$$\tau = \frac{mv_{\text{yct}}}{mg} \ln \frac{mg}{mg - \frac{1}{2} \frac{mg}{v_{\text{yct}}}} v_{\text{yct}}$$

После сокращений и упрощений получим: $\tau = \frac{v_{\text{уст}}}{c} \ln 2$

Подставив численные значения, получим $\tau = 5,66$ с. Проверка размерности результата в данном случае не обязательна, так как она очевидна.

Задача 9. Гиря, положенная на верхний конец спиральной пружины, поставленной на подставке, сжимает ее на x = 2 мм. Насколько сожмет пружину та же гиря, упавшая на конец пружины с высоты h = 5 см от пружины? Дано:

$$x = 2 \text{ MM}$$
 $h = 5 \text{ cM} = 50 \text{ MM}$
 $x_1 = ?$

Система, состоящая из гири и пружины, консервативна, $\frac{h=5\ {\rm cm}=50\ {\rm mm}}{x_1=?}$ поэтому согласно закону сохранения энергии имеем $E_1=E_2$. До падения гири энергия системы E_1 — это только

потенциальная энергия гири поднятой на высоту h, следовательно, $E_1 = mgh$.

После падения энергия системы E_2 состоит из потенциальных энергий пружины жесткостью k, сжатой на x_1 :

$$\Pi_{\Pi P} = kx_1^2/2$$

и гири:

$$\Pi_{\Gamma} = -mgx_1.$$

Знак минус говорит о том, что за нулевой уровень потенциальной энергии был принят уровень верхнего конца пружины в несжатом состоянии, а после сжатия уровень потенциальной энергии стал отрицательным, поэтому

$$E_2 = -mgx_1 + kx_1^2/2.$$

Таким образом, имеем

$$mgh = -mgx_1 + \frac{kx_1^2}{2}$$

После несложных преобразований получим

$$mg(h+x_1) = \frac{kx_1^2}{2},$$
 (1)

Неизвестную жесткость пружины k определим из следующих соображений.

Гиря, лежащая на подставке, сжимает пружину за счет силы тяжести mg, и компенсируется силой упругости пружины, по закону Гука равной

$$F = -kx$$
.

Следовательно, имеем

$$mg = kx$$
, откуда
$$k = \frac{mg}{x}$$
 (2)

Из (2) и (1) после несложных преобразований получим квадратное уравнение:

$$x_1^2 - 2xx_1 - 2hx = 0$$
.

Подставив численные значения в это квадратное уравнение, получим два корня: положительный и отрицательный. Отрицательное значение x отбрасываем, как не имеющее физического смысла. В результате получаем $x_1 = 16,3$ мм.

Задача 10. Определить работу сил поля тяготения при перемещении тела массой m=12 кг из точки I, находящейся от центра Земли на расстоянии $r_1=4R$, в точку 2, находящуюся от ее центра на расстоянии $r_2=2R$, где R — радиус Земли.

Решение.

Поскольку силы тяготения консервативны, работа этих сил равна изменению потенциальной энергии системы тело — Земля, взятому с обратным знаком:

$$A_{1,2} = \Delta \Pi = \Pi_1 - \Pi_2$$
,

где Π_1 и Π_2 — потенциальные энергии системы тело — Земля соответственно в точках 1 и 2.

Так как Π = - G (M — масса Земли), то

$$\Pi_I$$
= - G и Π_2 = - G

Подставив эти выражения в (1), получим:

$$A_{12} = \frac{1}{4}G\frac{mM}{R}.$$

Учитывая, что $G\frac{M}{R^2} = g$, придем к выражению для искомой работы:

$$A_{12} = \frac{1}{4} mgR.$$

Вычисляя, получаем $A_{12} = 187 \text{ МДж}$.

Вопросы и задания:

Вопросы:

- 1. Механическое движение. Система отсчета.
- 2. Материальная точка. Траектория. Перемещение и путь.
- 3. Скорость и ускорение, как производные от радиус-вектора по времени.

- 4. Тангенциальное и нормальное ускорения.
- 5. Кинематика вращательного движения материальной точки.
- 6. Угловая скорость и угловое ускорение, как производные от угла поворота по времени.
- 7. Связь между линейными и угловыми характеристиками движения.
- 8. Первый закон Ньютона. Инерциальные системы отсчета.
- 9. Взаимодействие тел. Сила, масса. Импульс (количество движения).
- 10. Второй закон Ньютона.
- 11. Третий закон Ньютона. Изолированная система материальных тел.
- 12. Закон сохранения импульса.
- 13. Виды сил в механике.
- 14.Силы упругости.
- 15.Силы трения.
- 16.Силы тяготения. Центральные силы.
- 17. Понятие о поле сил.
- 18. Гравитационное поле и его напряженность.
- 19. Поле силы тяжести вблизи Земли.
- 20. Понятие об неинерциальных системах отсчета.

Задания:

- 1. Две материальные точки движутся согласно уравнениям $x_1 = A_1 t + B_1 t^2 + C_1 t^3$, $x_2 = A_2 t + B_2 t^2 + C_2 t^3$, где $A_1 = 4$ м/c; $B_1 = 8$ м/c²; $C_1 = -16$ м/c³; $A_2 = 2$ м/c; $B_2 = -4$ м/c²; $C_2 = 1$ м/c³. Найти момент времени t, когда ускорения этих точек будут одинаковы. Найти скорости v_1 и v_2 точек в этот момент времени.
- 2. Точка движется по прямой согласно уравнению $x=At+Bt^3$, где A=6 м/с; B=1/8 м/с³. Найти среднюю путевую скорость < v> точки в интервале времени от $t_1=2$ с до $t_2=6$ с.
- 3. Движение точки по прямой задано уравнением $x=At+Bt^2$, где A=2 м/с; B=
- = -0.5м/с². Определить среднюю путевую скорость < v> движения точки в интервале времени от t_1 =0с до t_2 =3с.
- 4. Тело брошено с балкона вертикально вверх со скоростью $v_0 = 10$ м/с. Высота балкона над поверхностью земли h = 12м. Написать уравнение движения и определить среднюю путевую скорость $\langle v \rangle$ с момента бросания до момента падения на землю.
- 5. С балкона бросили мячик вертикально вверх с начальной скоростью $v_0 = 5$ м/с. ерез t = 2с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.

- 6. Тело, брошенное вертикально вверх, находилось на одной и той же высоте
- h = 8,6м два раза с интервалом $\Delta t = 3$ с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.
- 7. Вертикально вверх с начальной скоростью v_0 =20м/с брошен камень. Через τ =1с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни?
- 8. Камень брошен вертикально вверх с начальной скоростью v_0 =20 м/с. Через какое время камень будет находиться на высоте h = 15м? Найти скорость v камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g = 10 м/с².
- 9. Камень падает с высоты h = 1200м. Какой путь s пройдет камень за последнюю секунду своего падения?
- 10. С какой высоты H упало тело, если последний метр своего пути оно прошло за время t = 0.1с?
- 11. Тело брошено под некоторым углом α к горизонту. Найти величину этого угла, если горизонтальная дальность s полета тела в четыре раза больше максимальной высоты H траектории.
- 12. Снаряд, выпущенный из орудия под углом $\alpha = 30^{\circ}$ к горизонту, дважды был на одной и той же высоте h: спустя время t = 10 с и t = 50 с после выстрела. Определить начальную скорость v_0 и высоту h.
- 13. Пуля пущена с начальной скоростью v_0 =200 м/с под углом $\alpha = 60^\circ$ к горизонту. Определить максимальную высоту H подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.
- 14. Камень брошен с вышки в горизонтальном направлении с начальной скоростью v_0 =30 м/с. Определить скорость v, тангенциальное a_τ и нормальное a_n ускорения в конце второй секунды после начала движения.
- 15. Тело брошено под углом $\alpha = 30^{\circ}$ к горизонту. Найти тангенциальное a_{τ} и нормальное a_n ускорения в начальный момент движения.
- 16. Диск радиусом r = 10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением $\varepsilon = 0,5$ рад/с². Найти тангенциальное a_{τ} , нормальное a_n и полное a ускорения точек на окружности диска в конце второй секунды после начала вращения.
- 17. Диск радиусом r = 20 см вращается согласно уравнению $\varphi = A + Bt + Ct^3$, где A = 3 рад; B = -1 рад/с; C = 0, 1рад/с³. Определить тангенциальное a_{τ} , нормальное a_n и полное a ускорения точек на окружности диска для момента времени t = 10 с.
- 18. Маховик начал вращаться равноускоренно и за промежуток времени $\Delta t = 10$ с достиг частоты вращения n = 300 мин⁻¹. Определить угловое ускорение ε маховика и число N оборотов, которое он сделал за это время.
- 19. Велосипедное колесо вращается с частотой n=5 с⁻¹. Под действием сил трения оно остановилось через интервал времени $\Delta t=1$ мин. Определить угловое ускорение ε и число N оборотов, которое сделает колесо за это время.

- 20. Колесо автомашины вращается равноускоренно. Сделав N=50 полных оборотов, оно изменило частоту вращения от n_1 =4 c⁻¹ до n_2 =6 c⁻¹. Определить угловое ускорение ε колеса.
- 21. Самолет летит в горизонтальном направлении с ускорением $a=20 \text{ м/c}^2$. Какова перегрузка пассажира самолета? (Перегрузкой называется отношение силы F, действующей на пассажира, к силе тяжести P).
- 22. Автоцистерна с керосином движется с ускорением a = 0.7 м/с². Под каким углом φ к плоскости горизонта расположен уровень керосина в цистерне?
- 23. Бак в тендере паровоза имеет длину l=4 м. Какова разность Δl уровней воды у переднего и заднего концов бака при движении поезда с ускорением $a = 0.5 \text{ м/c}^3$?
- 24. Катер массой m=2m трогается с места и в течение времени $\tau=10$ с развивает при движении по спокойной воде скорость v=4 м/с. Определить силу тяги F мотора, считая ее постоянной. Принять силу сопротивления F_c движению пропорциональной скорости; коэффициент сопротивления k=100 кг/с.
- 25. Начальная скорость v_0 пули равна 800 м/с. При движении в воздухе за время t=0,8c ее скорость уменьшилась до v=200. Масса m пули равна 10 г. Считая силу сопротивления воздуха пропорциональной квадрату скорости, определить коэффициент сопротивления k. Действием силы тяжести пренебречь.
- 26. Материальная точка массой m=2 кг движется под действием некоторой силы F согласно уравнению $x=A+Bt+Ct^2+Dt^3$, где C=1 м/c², D=-0,2 м/c³. Найти значения этой силы в моменты времени $t_1=2$ с и $t_2=5$ с. В какой момент времени сила равна нулю?
- 27. Наклонная плоскость, образующая угол $\alpha = 25^{\circ}$ с плоскостью горизонта, имеет длину l = 2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t = 2с. Определить коэффициент трения μ тела о плоскость.
- 28. На гладком столе лежит брусок массой m = 4 кг. К бруску привязаны два шнура, перекинутые через неподвижные блоки, прикрепленные к противоположным краям стола. К концам шнуров подвешены гири, массы которых m_1 =1 кг и m_2 = 2кг. Найти ускорение a, с которым движется брусок, и силу T натяжения каждого из шнуров. Массой блоков и трением пренебречь.
- 29. Два бруска массами m_1 =1 кг и m_2 = 4кг, соединенные шнуром, лежат на столе. С каким ускорением a будут двигаться бруски, если к одному из них приложить силу F = 10 H, направленную горизонтально? Какова будет сила T натяжения шнура, соединяющего бруски, если силу 10 H приложить к первому бруску? Ко второму бруску? Трением пренебречь.
- 30. К пружинным весам подвешен блок. Через блок перевешен шнур, к концам которого привязали грузы массами $m_1 = 1,5$ кг и $m_2 = 3$ кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.
- 31. Две пружины с жесткостями k_1 =0,3 кH/м и k_2 =0,5 кH/м скреплены последовательно и растянуты так, что абсолютная деформация x_2 второй пружины равна 3 см. Вычислить работу A растяжения пружин.

- 32. Две пружины, жесткости которых k_1 =1 кH/м и k_2 =3 кH/м, скреплены параллельно. Определить потенциальную энергию Π данной системы при абсолютной деформации x=5 см.
- 33. В пружинном ружье пружина сжата на x_1 =20 см. При взводе ружья ее сжали еще на x_2 =30 см. С какой скоростью v вылетит из ружья стрела массой m=50 кг, если жесткость пружины равна 120 H/м?
- 34. Вагон массой m=12 т двигался со скоростью v=1 м/с. Налетев на пружинный буфер, он остановился, сжав пружину буфера на x=10 см. Найти жесткость k пружины.
- 35. Стальной стержень растянут так, что напряжение в материале стержня σ =300 МПа. Найти: объемную плотность w потенциальной энергии растянутого стержня.
- 36. Пружина жесткостью k=1 кH/м была сжата на $x_1=4$ см. Какую нужно совершить работу A, чтобы сжатие пружины увеличить до $x_2=18$ см?
- 37. Искусственный спутник обращается вокруг Земли по окружности на высоте h = 3600 км. Определить линейную скорость спутника. (Радиус Земли R = 6400 км, ускорение свободного падения g на поверхности Земли считать известным).
- 38. Радиус R малой планеты равен 250 км, средняя плотность ρ =3 г/см³. Определить ускорение свободного падения g на поверхности планеты.
- 39. Радиус R планеты Марс равен 3,4 Мм, ее масса M=6,4·10²³ кг. Определить напряженность g гравитационного поля на поверхности Марса.
- 40. Ракета, пущенная вертикально вверх, поднялась на высоту h=3200 км и начала падать. Какой путь S пройдет ракета за первую секунду своего падения?

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики.— М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, 2010 г.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Практическое занятие 2.

Тема 2. Законы сохранения. Работа, мощность, энергия: понятия и взаимосвязь. Законы сохранения.

Цель занятия: рассмотреть законы сохранения энергии и импульса.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - законов сохранения энергии и импульса;

уметь – применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать законы сохранения энергии и импульса в их взаимосвязи, формировать навыки применения законов сохранения энергии и импульса к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Работа силы:

элементарная
$$dA = \vec{F}d\vec{r}$$
;

полная
$$A = \int \vec{F} d\vec{r}$$
 .

Мощность
$$N = \frac{dA}{dt} = \vec{F} \vec{\upsilon}.$$

Кинетическая энергия материальной точки
$$T = \frac{m v^2}{2} = \frac{p^2}{2m}$$
.

Закон сохранения механической энергии
$$E = T + \Pi = const$$
.

Примеры решения задач

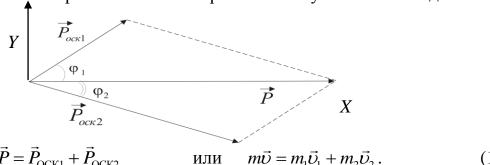
Задача 1. Снаряд массой m = 5кг обладал скоростью v = 300 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая часть массой m=2 кг, получила скорость $\upsilon_1=500$ м/с и полетела вперед под углом 60° к горизонту. Найти скорость υ_2 после разрыва второй, большей части, и под каким углом к горизонту она полетела.

Дано:

m=5кг v = 300 m/c $v_1 = 500 \text{ m/c}$ m_1 =2 кг $\varphi_1 = 60^{\circ}$

 υ_2 – ? φ_2 – ?

В верхней части траектории, снаряд двигался горизонтально. Геометрически закон сохранения импульса имеет вид



$$\vec{P} = \vec{P}_{\text{ОСК1}} + \vec{P}_{\text{ОСК2}}$$
 или $m\vec{v} = m_1\vec{v}_1 + m_2\vec{v}_2$. (1)

Используя теорему косинусов, найдем $|\vec{P}_{\text{OCK2}}|$

$$\left(P_{\text{OCK2}}\right)^2 = P^2 + \left(P_{\text{OCK1}}\right)^2 - 2P \cdot P_{\text{OCK1}} \cdot \cos \varphi_1. \tag{2}$$

Так как
$$P_{\text{оск2}} = (m - m_1) \upsilon_2$$
 получим, что
$$\upsilon_2 = \frac{P_{\text{оск2}}}{m - m_1} = \frac{\sqrt{1500^2 + 1000^2 - 2 \cdot 1500 \cdot 1000 \cdot \cos 60^\circ}}{(5 - 2)} = 441 \,\text{m/c}.$$

Спроецируем вектора \vec{P}_{OCK1} и \vec{P}_{OCK2} на направление \vec{P} . По теореме о проекции суммы векторов, получим

$$P = P_{ ext{OCK.1}\vec{ ext{P}}} + P_{ ext{OCK.2}\vec{ ext{P}}}$$
 , но $P_{ ext{OCK.1}\vec{ ext{P}}} = \left| \vec{P}_{ ext{OCK.1}} \right| \cdot \cos \varphi_1$, а $P_{ ext{OCK.2}\vec{ ext{P}}} = \left| \vec{P}_{ ext{OCK.2}} \right| \cdot \cos \left(- \varphi_2 \right)$, т.к. угол φ_2 лежит ниже оси \vec{P} , откуда

$$\cos(-\varphi_2) = \frac{P - (\vec{P}_{OCK.1}) \cdot \cos \varphi_1}{|\vec{P}_{OCK.2}|} = \frac{1500 - 1000 \cdot \cos 60^{\circ}}{1322,9} = 0,756,$$

 $-\varphi_2 = \arccos(0,756) = 40.8^{\circ}, \quad \text{a} \quad \varphi_2 = -40.8^{\circ}$ значит

Эту задачу можно решить и другим способом.

Выберем оси координат, как на рисунке. Записав уравнение (1) в проекциях на оси координат и, учитывая, что $\upsilon_x = \upsilon$ и $\upsilon_y = 0$, получим

$$m\upsilon = m_1\upsilon_1\cos\varphi_1 + m_2\upsilon_2\cos\varphi_2,$$

$$0 = m_1\upsilon_1\sin\varphi_1 - m_2\upsilon_2\sin\varphi_2.$$
(3)

Или

$$m_2 \upsilon_2 \cos \varphi_2 = m\upsilon - m_1 \upsilon_1 \cos \varphi_1,$$

$$m_2 \upsilon_2 \sin \varphi_2 = m_1 \upsilon_1 \sin \varphi_1.$$
(4)

Возводя в квадрат оба равенства, и сложив их, после тривиальных преобразований получим формулу (2) для вычисления импульса и скорости второго осколка. Из второго уравнения системы (4) получаем выражение

$$\sin \varphi_2 = -\frac{m_1 \upsilon_1 \sin \varphi_1}{m_2 \upsilon_2} ,$$

из которого вычисляем угол φ_2

Задача 2. На пружине жесткостью $k = 510^3$ Н/м подвешен блок в форме диска массой 5 кг и радиусом 0,2 м. Через блок перекинут шнур, к концам которого привязаны грузы $m_1 = 2$ кг и $m_2 = 3$ кг. Найти: 1) ускорение грузов и угловое ускорение блока; 2) силы натяжения шнура; 3) силу упругости пружины и удлинение пружины; 4) кинетическую энергию системы через 2 с; 5) изменение потенциальной энергии блока и грузов за 2 с; 6) найти ускорение центра масс грузов.

Дано:

 $m_0 = 5 \text{ K}\Gamma$

 $m_1 = 2 \text{ K}\Gamma$

 $m_2 = 3 \text{ K}\Gamma$

 $k = 5.10^3 \text{ H/M}$

r = 0.2 M

t = 2 c $a - ? \varepsilon - ?$ Укажем все силы, действующие на каждое тело (см. рис.).

Напишем уравнение второго закона Ньютона в векторной

форме для каждого тела, при этом блок совершает

вращательное

движение. Учтем, также что $I = m_0 r^2/2$ и

 $a = \varepsilon \cdot r$ (проскальзывания нет) и линейное

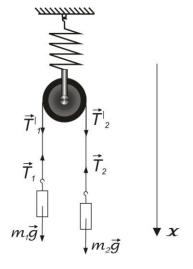
ускорение крайних точек блока равно

ускорению точек шнура. Заметим, что по третьему закону Ньютона $T_1' = T_1$ и $T_2' = T_2$.

Для проекций сил на ось X получим

систему уравнений:

$$\begin{cases}
 m_2 g - T_2 = m_2 a \\
 T_1 - m_1 g = m_1 a \\
 T_2 \cdot r - T_1 \cdot r = \frac{1}{2} m_0 r^2 \cdot \frac{a}{r} \\
 T_1 + T_2 + m_0 g - F = 0.
\end{cases}$$
(1)



Складывая первые три уравнения, получим

$$m_2 g - m_1 g = a \left(\frac{1}{2} m_0 + m_2 + m_1 \right) \Rightarrow$$

$$a = \frac{m_2 - m_1}{\frac{1}{2} m_0 + m_2 + m_1} g \Rightarrow a = \frac{10 \cdot (3 - 2)}{7,5} = \frac{4}{3} \text{ m/c}^2 = 1,33 \text{ m/c}^2.$$

$$\varepsilon = \frac{a}{r} = \frac{1,33}{0,2} = 6,66 \frac{1}{c^2}.$$

Из первого уравнения найдем: $T_2 = T_2' = m_2(g - a) = 26, 0 \text{ H}.$

Из второго уравнения найдем: $T_1 = T_1' = m_1(g+a) = 22, 7 \text{ H}.$

Из четвертого уравнения найдем F:

$$F = T_1 + T_2 + m_0 g = 98,7 \text{ H}.$$

Удлинение пружины найдем из формулы закона Гука:

$$F = -k\Delta x \Rightarrow \Delta x = \frac{F}{k} = \frac{98.7}{510^3} = 0.0197 \text{ m} = 1.97 \text{ cm}.$$

Это удлинение пружины при движущихся грузах. Если застопорить блок, то $F_1 = (m_1 + m_2 + m_0) \cdot g = 100 \, H$, что вызовет удлинение пружины точно 2 см. С началом движения пружина сократится на $\approx 0,3$ мм. Из системы уравнений (1) можно получить формулу для разности силы натяжения $\Delta F = F_1 - F$:

$$\Delta F = \frac{\left(m_2 - m_1\right)^2}{\frac{1}{2}m_0 + m_2 + m_1} g ,$$

используя которую можно оценить изменение растяжения пружины

$$\Delta x' = \Delta F/k = 0.27$$
 MM.

Чтобы найти кинетическую энергию всей системы, найдем кинетическую энергию поступательного движения грузов $K_{\rm rp}$ и кинетическую энергию вращательного движения блока $K_{\rm бл}$:

$$K_{\rm rp} = \frac{\left(m_1 + m_2\right) \upsilon^2}{2};$$
 Так как $\upsilon = at \Rightarrow$
$$K_{\rm rp} = K_{\rm rp} = \frac{\left(m_1 + m_2\right) a^2 t^2}{2} = \frac{5 \cdot 1{,}33^2 \cdot 4}{2} \approx 17{,}7 \; \text{Дж.}$$

 $K_{\rm бл} = \frac{I\omega^2}{2}$ так как $\omega = \upsilon/r$, и $I = m_0 r^2/2$, то $K_{\rm бл} = \frac{m_0 r^2 \upsilon^2}{4 \cdot r^2} = 9$ Дж.

Таким образом полная кинетическая энергия $K = K_{\rm rp} + K_{\rm бл} = 26,7$ Дж.

Задача 11. Два свинцовых шара массами $m_1 = 2$ кг и $m_2 = 3$ кг подвешены на нитях длиной l = 70 см. Первоначально шары соприкасаются между собой, затем меньший шар отклонили на угол $\alpha = 60^{\circ}$ и отпустили. Считая удар центральным и неупругим, определить: 1) высоту h, на которую поднимутся шары после удара; 2) энергию ΔT , израсходованную на деформацию шаров при ударе.

Решение.

Удар неупругий, поэтому после удара шары движутся с общей скоростью υ , которую найдем из закона сохранения импульса:

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2)v,$$
 (1)

где $\upsilon_{_1}$ и $\upsilon_{_2}$ — скорости шаров до удара. Скорость $\upsilon_{_1}$ малого шара найдем из закона сохранения механической энергии:

$$m_1gh_1=\frac{m_1\nu_1^2}{2},$$

откуда:

$$\nu_{1} = \sqrt{2gh_{1}} = 2\sqrt{2gl(1-\cos\alpha)} = 2\sqrt{gl}\sin\frac{\alpha}{2}, \quad (2)$$

h=2R

(учли, что $h_1 = l(1-\cos\alpha)$).

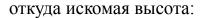
Из выражений (1) и (2) при условии, что $\bar{\nu}_2 = 0$, получим:

$$v = \frac{m_1 v_1}{m_1 + m_2} = \frac{2m_1 \sqrt{gl} \sin \frac{\alpha}{2}}{m_1 + m_2},$$
 (3)

сохранения

механической энергии имеем:

$$(m_1 + m_2) \frac{v^2}{2} = (m_1 + m_2) gh,$$



$$h = \frac{v^2}{2g} = \frac{2m_1^2 l \sin^2 \frac{\alpha}{2}}{m_1 + m_2}$$

(учли формулу (3)).

Энергия, израсходованная на деформацию шаров при ударе,

$$\Delta T = \frac{m_1 v_1^2}{2} - \frac{m_1 + m_2}{2} v^2, \qquad (4)$$

или, подставив (2) в (4), находим:

$$\Delta T = 2gl \frac{m_1 m_2}{m_1 + m_2} \sin^2 \frac{\alpha}{2}.$$

Вычисляя, получаем: 1) h = 5.6 см; 2) $\Delta T = 4.12$ Дж.

Задача 4. Мотоциклист едет по горизонтальной дороге. Какую наименьшую скорость v он должен развить, чтобы, выключив мотор, проехать по треку, имеющему форму «мертвой петли» радиусом R = 4 м. Трением и сопротивлением воздуха пренебречь.

Дано:

$$mg + N = ma$$
.

Так как при минимальной скорости

$$N=0$$
, то $a=v^2/R$, и следовательно

$$\frac{mv_1^2}{R} = mg$$
, и $v_1 = \sqrt{gR}$ (1),

где v_1 – скорость мотоцикла в верхней точке «мертвой петли».

По закону сохранения энергии, полная энергия мотоциклиста на горизонтальной дороге, равная его кинетической энергии $\frac{m\upsilon^2}{2}$, будет равна полной энергии в верхней точке «мертвой петли», то есть сумме потенциальной энергии mgh и кинетической $\frac{m\upsilon_1^2}{2}$. Таким образом имеем $\frac{m\upsilon^2}{2} = mgh + \frac{m\upsilon_1^2}{2}$. Из последнего равенства получим $\upsilon^2 = 2gh + \upsilon_1^2$. Так как h = 2R, то $\upsilon_1^2 = \upsilon^2 - 4gR$. Подставляем полученное выражение в (1) найдем, что $\upsilon^2 = 4gR + gR = 5gR$, и $\upsilon = \sqrt{5gR} = 0$, 141 м/c = 14,1 см/c.

Задача 5. Груз массой m=80 кг поднимают вдоль наклонной плоскости с ускорением a=1 м/с². Длина наклонной плоскости l=3м, угол α ее наклона к горизонту равен 30°, а коэффициент трения f=0,15. Определить: 1) работу, совершаемую подъемным устройством; 2) его среднюю мощность; 3) его максимальную мощность. Начальная скорость груза равна нулю.

Решение.

Уравнение движения груза в векторной форме: $\overrightarrow{ma} = \overrightarrow{F} + \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_{\delta\delta}} + \overrightarrow{N}$. В проекциях на оси x и y (рис. 16) это уравнение примет вид $ma = F - F_1 - F_{\delta\delta}$, $0 = N - F_2$, где $F_1 = mg \sin \alpha$, $F_2 = mg \cos \alpha$, $F_{\delta\delta} = fN = fmg \cos \alpha$. Поэтому

$$F = m(a + g \sin \alpha + fg \cos \alpha).$$

Работа, совершаемая подъемным устройством,

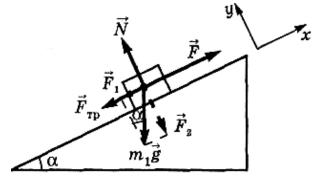
$$A = Fl = ml(a + g \sin \alpha + fg \cos \alpha)$$
.

Средняя мощность, развиваемая подъемным устройством,

$$\langle P \rangle = \frac{A}{t}$$
,

где $t = \sqrt{2l/a}$ — время подъема груза.

Следовательно,
$$\langle P \rangle = A \sqrt{\frac{a}{2l}}$$
.



Максимальная мощность, развиваемая подъемным устройством: $P_{\max} = F \upsilon_{\max} = Fat$. Подставляя значения, получаем $P_{\max} = m\sqrt{2al}\,(a+g\sin\alpha+fg\cos\alpha)$. Вычисляя, находим: 1) A=1,72 кДж; 2) $\langle P \rangle = 702$ Вт; 3) $P_{\max} = 1,41$ кВт.

Задача 6. Шарик массой m=300 г ударился о стену и отскочил от нее. Определить импульс p_1 , полученный стеной, если в этот момент перед ударом шарик имел скорость

10м/с, направленную под углом $\alpha = 30^{\circ}$ к поверхности стены. Удар считать абсолютно упругим.

Решение:

По условию задачи удар абсолютно упругий, следовательно, скорость шарика по абсолютному значению до и после удара одинаковы, т.е. $\upsilon = \upsilon_0$.

Применим закон сохранения импульса(в проекциях на оси координат):

y:
$$p_{1y} = 0 = m(v_{0y} - v_y) = m(v_{0y} - v_{0y}) = 0$$

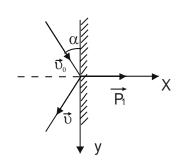
x: $p_{1x} = p_1 = m(v_{0x} - (-v_{0x})) = 2mv_{0x}$,

где $\upsilon_{0x} = \upsilon_0 \sin \alpha$

$$p_1 = 2mv_0 \sin \alpha$$

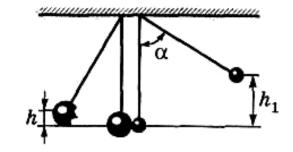
тогда

$$P_I = 2 \cdot 0.3 \text{ KC}^* 10 \text{ M/c}^* \sin 30^\circ = 15 \frac{\text{K} \Gamma \cdot \text{M}}{\text{c}}.$$



Задача 7. Два свинцовых шара массами $m_1 = 2$ кг и $m_2 = 3$ кг подвешены на нитях длиной l = 70см. Первоначально шары соприкасаются между собой, затем

меньший шар отклонили на угол $\alpha = 60^{\circ}$ и отпустили. Считая удар центральным и неупругим, определить высоту h, на которую поднимутся шары после удара и энергию ΔT израсходованную на деформацию шаров при ударе.



Решение.

Удар неупругий, поэтому после удара шары движутся с общей скоростью υ , которую найдем из закона сохранения импульса:

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2)v,$$
 (1)

где υ_1 и υ_2 — скорости шаров до удара. Скорость υ_1 малого шара найдем из закона сохранения механической энергии:

$$m_1gh_1=\frac{m_1v_1^2}{2},$$

откуда:

$$\upsilon_{1} = \sqrt{2gh_{1}} = 2\sqrt{2gl(1 - \cos\alpha)} = 2\sqrt{gl}\sin\frac{\alpha}{2}, \quad (2)$$

(учли, что $h_1 = l(1 - \cos \alpha)$).

Из выражений (1) и (2) при условии, что v_2 = 0, получим:

$$\upsilon = \frac{m_1 \upsilon_1}{m_1 + m_2} = \frac{2m_1 \sqrt{gl} \sin \frac{\alpha}{2}}{m_1 + m_2},$$
 (3)

Из закона сохранения механической энергии имеем:

$$(m_1 + m_2) \frac{v^2}{2} = (m_1 + m_2) gh,$$

откуда искомая высота:

$$h = \frac{v^2}{2g} = \frac{2m_1^2 l \sin^2 \frac{\alpha}{2}}{m_1 + m_2}$$

(учли формулу (3)).

Энергия, израсходованная на деформацию шаров при ударе,

$$\Delta T = \frac{m_1 v_1^2}{2} - \frac{m_1 + m_2}{2} v^2, \tag{4}$$

или, подставив (2) в (4), находим:

$$\Delta T = 2gl \frac{m_1 m_2}{m_1 + m_2} \sin^2 \frac{\alpha}{2}.$$

Вычисляя, получаем: 1) h = 5.6 см; 2) $\Delta T = 4.12$ Дж.

Вопросы и задания:

Вопросы:

- 1. Работа. Работа переменной силы.
- 2. Мощность.
- 3. Консервативные и неконсервативные силы. Потенциальная энергия.
- 4. Связь между силой и потенциальной энергией.
- 5. Энергия упруго деформированного тела.
- 6. Кинетическая энергия и её связь с работой приложенных сил.
- 7. Полная механическая энергия системы тел.
- 8. Закон сохранения механической энергии.
- 9. Диссипация энергии.

Задания:

- 1. Снаряд массой m=10 кг обладал скоростью $v=200\,$ м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая массой $m_1=3$ кг получила скорость $u_1=400$ м/с в прежнем направлении. Найти скорость u_2 второй, большей части после разрыва.
- 2. Грузик, привязанный к шнуру длиной l=50см, описывает окружность в горизонтальной плоскости. Какой угол φ образует шнур с вертикалью, если частота вращения n=1с⁻¹.
- 3. Грузик, привязанный к нити длиной l=1 м, описывает окружность в горизонтальной плоскости. Определить период T обращения, если нить отклонена на угол $\varphi = 60^{\circ}$ от вертикали.

- 4. Автомобиль идет по закруглению шоссе, радиус R кривизны которого равен 200 м. Коэффициент трения μ колес о покрытие дороги равен 0,1 (гололед). При какой скорости ν автомобиля начнется его занос?
- 5. Какую наибольшую скорость v_{max} может развить велосипедист, проезжая закругление радиусом R=50м, если коэффициент трения скольжения μ между шинами и асфальтом равен 0,3? Каков угол φ отклонения велосипеда от вертикали, когда велосипедист движется по закруглению?
- 6. Камень скользит с наивысшей точки полусферы, радиуса R. Какой длины дугу опишет камень, прежде чем оторвется от ее поверхности? Трением пренебречь.
- 7. Ракета массой m=1m, запущенная с поверхности Земли вертикально вверх, поднимается с ускорением a=2g. Скорость v струи газов, вырывающихся из сопла, равна 1200 м/с. Найти расход $Q_{\rm m}$ горючего.
- 8. Шарик массой m=300 г ударился о стену и отскочил от нее. Определить импульс p_1 , полученный стеной, если в последний момент перед ударом шарик имел скорость $v_0=10$ м/с, направленную под углом $\alpha=30^\circ$ к поверхности стены. Удар считать абсолютно упругим.
- 9. Тело массой m=5 кг брошено под углом $\alpha=30^{\circ}$ к горизонту с начальной скоростью $v_0=20$ м/с. Пренебрегая сопротивлением воздуха, найти: 1) импульс силы F, действующей на тело, за время его полета; 2) изменение Δp импульса тела за время полета.
- 10. Материальная точка массой m=1 кг, двигаясь равномерно, описывает четверть окружности радиуса r=1,2 м в течение времени t=10 с. Найти изменение Δp импульса точки.
- 11. Из двух соударяющихся абсолютно упругих шаров больший шар покоится. В результате прямого удара меньший шар потерял 3/4 своей кинетической энергии T_1 . Определить отношение k=M/m масс шаров.
- 12. Шар массой m = 1,8 кг сталкивается с покоящемся шаром большей массы М. В результате прямого упругого удара шар потерял 36% своей кинетической энергии T_1 . Определить массу большего шара.
- 13. Шар массой $m_1 = 200$ г, движущийся со скоростью $v_1 = 10$ м/с, ударяет неподвижный шар массой $m_2 = 200$ г. Удар прямой, абсолютно упругий. Найти скорости u_1 и u_2 шаров после удара?
- 14. Молотком, масса которого $m_1 = 1$ кг, забивают в стену гвоздь массой $m_2 = 75$ г. Определить КПД η удара молотка при данных условиях.
- 15. Боек свайного молота массой $m_1 = 500$ кг падает с некоторой высоты на сваю массой $m_2 = 100$ г. Найти КПД η удара бойка, считая удар неупругим. Изменением потенциальной энергии сваи при углублении ее пренебречь.
- 16. Молот массой $m_1 = 5$ кг ударяет небольшой кусок железа, лежащий на наковальне. Масса m_2 наковальни равна 100 кг. Массой куска железа пренебречь. Удар неупругий. Определить КПД η удара молота при данных условиях.
- 17. Молекула распадается на два атома. Масса одного из атомов в n=3 раза больше другого. Пренебрегая начальной кинетической энергией и импульсом

молекулы, определить кинетические энергии T_1 и T_2 атомов, если их суммарная кинетическая энергия T = 0.032 нДж.

- 18. Конькобежец, стоя на льду, бросил вперед гирю массой $m_1 = 5$ кг и вследствие отдачи покатился назад со скоростью $v_2 = 1$ м/с. Масса конькобежца $m_1 = 60$ кг. Определить работу A, совершенную конькобежцем при бросании гири.
- 19. Ядро атома распадается на два осколка массами $m_1 = 1,6\cdot 10^{-25}$ кг и $m_2 = 2,4\cdot 10^{-25}$ кг. Определить кинетическую энергию T_2 второго осколка, если энергия T_1 , первого осколка равна 18 нДж.
- 20. При выстреле из орудия снаряд массой $m_1 = 10$ кг получает кинетическую энергию $T_1 = 1,8$ кДж. Определить кинетическую энергию T_2 ствола орудия вследствие отдачи, если масса m_2 ствола орудия равна 600 кг.

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010 \, \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Практическое занятие 3

Тема 3. Элементы механики сплошных сред. Силы в природе. Законы механики вращательного движения твёрдого тела. Силы в природе. Элементы классической теории гравитации. Границы применимости классической механики. Механические колебания.

Цель занятия: научиться решать задачи на законы механики твёрдого тела.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - законов механики твёрдого тела;

умения – применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать законы механики твёрдого тела в их взаимосвязи, формировать навыки применения законов механики твёрдого тела к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Момент инерции материальной точки

 $J = mr^2$,

где m – масса точки, r – её расстояние до оси вращения.

Момент инерции тела относительно оси, проходящей через центр масс

$$J=\int_{V}\rho r^{2}dV,$$

где ρ – плотность тела.

Если тело имеет форму:

а) тонкостенного цилиндра (кольца) радиуса R

$$J_0 = mR^2;$$

б) сплошного цилиндра (диска) радиуса R,

$$J_0 = \frac{1}{2} mR^2;$$

(оси вращения совпадают с осью цилиндров).

$$J_0 = \frac{2}{5}mR^2;$$

$$\Gamma$$
) тонкого стержня длиной l

$$J_0 = \frac{1}{12}ml^2.$$

(ось вращения перпендикулярна стержню).

Момент инерции тела массой m относительно произвольной оси (теорема Штейнера) $J = J_0 + md^2$,

где J_0 — момент инерции относительно параллельной оси, проходящей через центр масс, d — расстояние между осями.

Момент силы

$$\vec{M} = \vec{r} \times \vec{F}$$
.

где r – радиус-вектор точки приложения силы.

Момент импульса

 $\vec{L} = J\vec{\omega}$.

Основное уравнение динамики вращательного движения

$$\vec{M} = \frac{d\vec{L}}{dt}$$
.

При J = const, $\vec{M} = J\vec{\varepsilon}$.

Закон сохранения момента импульса для изолированной системы

$$\sum \vec{L}_{\rm i} = \sum J_{\rm i} \vec{\omega}_{\rm i} = const$$
.

Работа при вращательном движении:

элементарная

$$dA = \vec{M} \ d\vec{\varphi}$$
;

полная

$$A = \int \vec{M} \ d\vec{\varphi}.$$

Кинетическая энергия вращающегося тела

$$T = \frac{J\omega^2}{2} = \frac{L^2}{2J}.$$

Примеры решения задач

Задача 1. Шар массой m=5 кг и радиусом R=5 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид

 $\varphi = A + Bt^2 + Ct^3$, где A = 2 рад, B = 16 рад/ c^2 , C = -2 рад/ c^3 . Найти закон изменения момента сил, действующих на шар и определить момент сил M в момент времени t = 2c.

Дано:

$$m = 5 \text{ кг}$$
 $R = 5 \cdot 10^{-2} \text{ м}$
 $\varphi = A + Bt^2 + Ct^3$
 $A = 2 \text{ рад}$
 $B = 16 \text{ рад/c}^2$
 $C = -2 \text{ рад/c}^3$.
 $t = 2 \text{ c}$
 $M(t) = ? M(2) = ?$

Так как момент инерции шара постоянный, основное уравнение динамики вращательного движения имеет вид:

$$M = I \cdot \varepsilon \tag{1}$$

где I — момент инерции, \mathcal{E} — угловое ускорение тела, M — момент сил, действующих на него.

Для шара момент инерции
$$I = \frac{2}{5}mR^2$$
. (2)

По определению угловое ускорение есть вторая производная от угла поворота вращающегося тел по времени

$$\varepsilon = \ddot{\varphi}(t) = \left(A + Bt^2 + Ct^3\right)'' = \left(2Bt + 3Ct^2\right)' = 2B + 6Ct.$$
 (3)

Подставляя (2) и (3) в (1) и используя численные значения A, B и C найдем закон изменения момента сил, действующих на шар.

$$M(t) = \frac{2}{5}mR^2 \cdot (2B + 6Ct) = (0.16 - 0.06t) \text{ H} \cdot \text{M}.$$

Для момента времени t=2 с, M(2)=0.04 H·м.

Задача 2. Диск радиусом R = 0.5 м и массой m = 50 кг раскручен до частоты вращения $n_1 = 10$ с⁻¹ и предоставлен самому себе. Под действием сил трения маховик остановился через 60с. Найти момент сил трения.

Дано: R=0,5 м $dL_{\rm x}/dt=M_{\rm x}$ (1) m=50 кг где $dL_{\rm x}-$ изменение проекции на ось X момента импульса диска, вращающегося относительно оси X, совпадающей с геометрической осью диска, за интервал времени dt . $M_{\rm x}-$ проекция на ось X момента внешних сил (в данном случае сил трения), действующих на диск. Считаем, что момент сил трения со временем не изменяется, тогда уравнение (1) можно записать в виде:

$$\Delta L_{\rm v} = M_{\rm v} \Delta t \tag{2}$$

Изменение проекции момента импульса

$$\Delta L_{x} = I_{x} \cdot \Delta \omega, \tag{3}$$

где $I = mR^2/2$ момент инерции диска относительно оси X. Из (2) и (3), имеем:

$$M_{x}\Delta t = mR^{2}/2 \cdot \Delta \omega. \tag{4}$$

Изменение угловой скорости $\Delta\omega=\omega_2-\omega_1=2\pi n_2-2\pi n_1=2\pi (n_2-n_1).$ Тогда из (4) получим

$$M_{x} = \frac{\pi m R^2 (n_2 - n_1)}{\Delta t}.$$

Так как $\Delta t = t$, а $n_2 = 0$ (диск остановился) то, подставив данные, получим, что

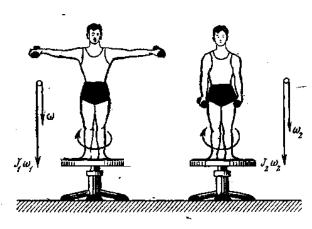
$$M = M_x = 65.4 \text{ H} \cdot \text{M}.$$

Проверим размерность полученного результата:

$$\frac{\mathbf{K}\mathbf{\Gamma} \cdot \mathbf{M}^2 \mathbf{c}^{-1}}{\mathbf{c}} = \frac{\mathbf{K}\mathbf{\Gamma} \cdot \mathbf{M}^2}{\mathbf{c}^2} = \frac{\mathbf{K}\mathbf{\Gamma} \cdot \mathbf{M}}{\mathbf{c}^2} \mathbf{M} = \mathbf{H} \times \mathbf{M}.$$

Задача 3. Человек массой 60 кг стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n_1 = 0,2 1/с. В вытянутых в сторону руках человек держит по гантели массой 6 кг каждая. Расстояние между гантелями 1,6 м. Определить: частоту вращения n_2 скамьи с человеком, после того, как он опустит руки, и расстояние между гантелями станет равным 0,4 м. При расчете моментов инерции человека принять за цилиндр радиусом 10 см, а скамью считать диском радиусом 0,4 м и массой 10 кг. Найти изменение энергии вращающейся системы. Трением пренебречь.

Дано: $m_1 = 60 \text{ кг}$ $r_1 = 0,1 \text{ м}$ $m_2 = 10 \text{ кг}$ $r_2 = 0,4 \text{ м}$ $n_1 = 0,2 \text{ c}^{-1}$ $l_1 = 0,4 \text{ м}$ $l_2 = 1,6 \text{ м}$ $m_3 = 6 \text{ кг}$ $m_2 - ?$ $\Delta W - ?$



Человек вместе со скамьей составляет замкнутую систему, вращающуюся вокруг вертикальной оси. Для такой системы справедлив закон сохранения момента импульса:

$$I_1 \omega_1 = I_2 \omega_2, \tag{1}$$

где моменты импульса $I_1\omega_1$ и $I_2\omega_2$ в начальный и в любой другой момент времени.

Здесь I — момент инерции, ω — угловая скорость. I_1 состоит из моментов инерции скамьи $I_{\rm ck} = m_2 r_2^2/2$, человека — $I_{\rm q} = m_1 r_1^2/2$ (скамья и человек считаются сплошными цилиндрами) и двух гантелей $I_{\rm r} = 2m_3(l_2/2)^2$.

Поэтому
$$I_1 = \left(\frac{1}{2}m_2r_2^2 + \frac{1}{2}m_1r_1^2 + 2m_3\left(\frac{l_2}{2}\right)^2\right)$$

Угловая скорость $\omega_1 = 2\pi n_1$. Аналогично, для второго положения гантелей имеем

$$I_2 = \left(\frac{1}{2}m_2r_2^2 + \frac{1}{2}m_1r_1^2 + 2m_{.3}\left(\frac{l_1}{2}\right)^2\right);$$
 и $\omega_2 = 2\pi n_2$

Подставив эти выражения в(1) получим:

$$\left(\frac{1}{2}m_{2}r_{2}^{2} + \frac{1}{2}m_{1}r_{1}^{2} + 2m_{3}\left(\frac{l_{2}}{2}\right)^{2}\right) \cdot 2\pi n_{1} = \left(\frac{1}{2}m_{2}r_{2}^{2} + \frac{1}{2}m_{1}r_{1}^{2} + 2m_{3}\left(\frac{l_{1}}{2}\right)^{2}\right) \cdot 2\pi n_{2}.$$

$$n_{2} = \frac{\left(\frac{1}{2} \cdot 10 \cdot 0, 16 + \frac{1}{2} \cdot 60 \cdot 0, 01 + 12 \cdot 0, 64\right) \cdot 0, 2}{\left(\frac{1}{2} \cdot 10 \cdot 0, 16 + \frac{1}{2} \cdot 60 \cdot 0, 01 + 12 \cdot 0, 04\right)} = \frac{1,756}{1,58} = 1, 1\frac{06}{c}$$

Кинетическая энергия вращающегося тела вычисляется по формуле $W=I\omega^2/2$.

$$W_1 = \frac{I_1 \omega_1^2}{2} = \frac{8,78 \cdot 1,58}{2} = 6,9 \text{ Дж}; \quad W_2 = \frac{I_2 \omega_2^2}{2} = \frac{1,58 \cdot 48,7}{2} = 38,5 \text{ Дж};$$
$$\Delta W = W_2 - W_1 = 31,6 \text{ Дж}.$$

Задача 4. Однородный тонкий стержень массой $m_1 = 0,2$ кг и длиной l = 1м может свободно вращаться вокруг горизонтальной оси Z, проходящей через точку O (см рис.) В точку A на стержне попадает пластилиновый шарик, массой $m_2 = 10$ г, летящий горизонтально со скоростью v = 10 м/с и прилипает к стержню. Определить угловую скорость стержня ω в начальный момент времени, если a = AO = l/3.

Дано:
$$m_1 = 0.2 \text{ кг}$$
 $l = 1 \text{ м}$ $m_2 = 10 \text{ г} = 0.01 \text{ кг}$ $v = 10 \text{ м/c}$ $a = l/3$ $\omega = ?$

Считая систему тел из шарика и стержня замкнутой, применим закон сохранения момента импульса: $L_0 = L$ (1)

В начальный момент удара угловая скорость стержня ω_0 =0, поэтому его момент импульса $L_{01}=0$. При этом летящий шарик попадает в точку A, следовательно относительно точки O (оси вращения) обладает моментом импульса $L_{02}=m_2va$, где a – расстояние от точки попадания до точки O. Таким образом $L_0=0+m_2va$.

Прилипший к стержню шарик будем считать материальной точкой, вращающейся с угловой скоростью стержня ω и, его момент импульса равен $L_2 = m_2 a^2 \omega$. $I\omega$ — момент импульса стержня, где I — его момент инерции относительно оси вращения. Тогда момента импульса системы стержень—

шарик будет равен $L_2 = I\omega + m_2a^2\omega$. Подставляя приведенные выше выражения в (1), получим

$$m_2 v a = I \omega + m_2 a^2 \omega.$$
 Следовательно,
$$\omega = \frac{m_2 v a}{I + m_2 a^2}.$$
 (2)

Чтобы найти I относительно точки O, воспользуемся теоремой Штейнера:

$$I = I_0 + m_1(OC)^2,$$

где $I_0 = m_1 l^2 / 12$ — момент инерции стержня относительно точки C (центра масс). Расстояние OC = l/2 - l/3 = l/6, тогда

$$I = \frac{m_1 l^2}{12} + m_1 \frac{l^2}{36} = \frac{m_1 l^2}{9}.$$
 С учетом (2) получим
$$\omega = \frac{m_2 \upsilon \frac{l}{3}}{\frac{m_1 l^2}{9} + \frac{m_2 l^2}{9}} = \frac{3m_2 \upsilon}{(m_1 + m_2)l} = \frac{3 \cdot 0.01 \cdot 10}{(0.01 + 0.2) \cdot 1} = 1.43 \ \frac{\text{рад}}{\text{с}}$$

Вопросы и задания:

Вопросы:

- 1. Понятие абсолютно твердого тела.
- 2. Поступательное и вращательное движения тела.
- 3. Число степеней свободы.
- 4. Центр инерции (масс) твердого тела.
- 5. Момент силы.
- 6. Момент инерции.
- 7. Основной закон динамики вращательного движения.
- 8. Момент импульса. Закон сохранения момента импульса.
- 9. Работа по вращению тела.
- 10. Кинетическая энергия тела, вращающегося вокруг неподвижной оси.

Задания:

1. Через неподвижный блок массой m=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m_1 =0,3 кг и m_2 =0,5 кг. Определить силы T_1 и T_2 натяжения шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу.

- 2. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m_1 = 100 г и m_2 = 110. С каким ускорением a будут двигаться грузики, если масса m блока равна 400 г? Трение при вращении блока ничтожно мало.
- 3. Вал массой m=100 кг и радиусом R=5 см вращался с частотой n=8 с⁻¹. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40 H, под действием которой вал остановился через t=10 с. Определить коэффициент трения μ .
- 4. На горизонтальную ось насажаны маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой m=0,4 кг. Опускаясь равномерно, груз прошел путь s=1,8 м за время t=3 с. Определить момент инерции J маховика. Массу шкива считать пренебрежимо малой.
- 5. Тонкий однородный стержень длиной l = 50 см и массой m = 400 г вращается с угловым ускорением $\varepsilon = 3$ рад/с² около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент M.
- 6. Шар массой m=10 кг и радиусом R= 20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид $\varphi = A + Bt^2 + Ct^3$, где B=4 рад/ c^2 ; C=-1 рад/ c^2 . Найти закон изменения момента сил, действующих на шар. Определить момент сил M_1 в момент времени t_1 = 2 c.
- 7. Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг, летящий в горизонтальном направлении со скоростью v =20 м/с. Траектория мяча проходит на расстоянии r = 0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью ω начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг·м²?
- 8. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой m=60 кг. На какой угол φ повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса m_2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки.
- 9. Платформа в виде диска радиусом R=1 м вращается по инерции с частотой n=6 мин⁻¹. На краю платформы стоит человек, масса m которого равна 80 кг. С какой n частотой будет вращаться платформа, если человек перейдет в ее центр? Момент инерции J платформы равен 120 кг·м². Момент инерции человека рассчитывать как для материальной точки.
- 10. На скамье Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой m=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n=1 с⁻¹. С какой частотой n_2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг·м².

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010\ \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Раздел 2. Основы молекулярно-кинетической теории и термодинамика

Практическое занятие 4

Тема 4. Основы молекулярно-кинетической теории. Основные понятия и законы молекулярно-кинетической теории. Статистические распределения и следствия из них. Элементы физической кинетики.

Цель занятия: рассмотреть основные законы и понятия статистической физики.

Знания и умения, приобретаемые студентом в результате освоения темы: знания - основных законов и понятий статистической физики; умения— применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные законы и понятия статистической физики в их взаимосвязи, формировать навыки применения законов и понятий статистической физики к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Количество вещества (число молей)
$$v = \frac{N}{N} = \frac{m}{M},$$

где N — число молекул, $N_{\rm A}$ — постоянная Авогадро, m — масса вещества, M — молярная масса.

Уравнение Клапейрона-Менделеева

pV = vRT,

где p — давление газа, V — его объем, R — универсальная газовая постоянная, T — термодинамическая температура.

Уравнение молекулярно-кинетической

теории газов
$$p = \frac{2}{3}n\langle \varepsilon_{\text{пост}} \rangle = \frac{1}{3}mn_0\langle \upsilon_{\text{kB}} \rangle^2,$$

где n — концентрация молекул, $\langle \varepsilon_{\text{пост}} \rangle$ — средняя кинетическая энергия поступательного движения молекулы, m_0 — масса молекулы $\langle \upsilon_{\text{\tiny KB}} \rangle$ — средняя квадратичная скорость.

Средняя энергия молекулы

$$\langle \varepsilon \rangle = \frac{i}{2} kT,$$

где i – число степеней свободы молекулы, k – постоянная Больцмана.

Внутренняя энергия идеального газа

$$U = \frac{i}{2} vRT.$$

Скорость молекул:

средняя квадратичная

$$\langle v_{\scriptscriptstyle KB} \rangle = \sqrt{3kT/m_0} = \sqrt{3RT/M};$$

средняя арифметическая

$$\langle \upsilon \rangle = \sqrt{8kT/(\pi m_0)} = \sqrt{8RT/(\pi M)}.$$

наиболее вероятная

$$\upsilon_{\rm B} = \sqrt{2kT/m_0} = \sqrt{2RT/M}.$$

Средняя длина свободного пробега молекулы

$$\langle \lambda \rangle = \left(\sqrt{2}\pi d^2 n \right)^{-1},$$

где d – эффективный диаметр молекулы.

Среднее число столкновений молекулы в единицу времени $\langle z \rangle = \sqrt{2}\pi d^2 n \langle \upsilon \rangle$.

Распределение молекул в потенциальном поле сил

$$n = n_0 \exp\left(-\frac{II}{kT}\right),\,$$

где Π – потенциальная энергия молекулы.

Барометрическая формула

$$p = p_0 \exp\left(-\frac{m_0 g h}{kT}\right).$$

Уравнение диффузии

$$dm = -D\frac{d\rho}{dx}dSdt,$$

где D — коэффициент диффузии, ρ — плотность, dS — элементарная площадка, перпендикулярная оси OX.

Уравнение теплопроводности

$$dQ = - \frac{dT}{dx} dS dt,$$

где æ – теплопроводность.

Сила внутреннего трения

$$dF = -\eta \frac{d\upsilon}{dx} dS,$$

где η — динамическая вязкость.

Коэффициент диффузии

$$D = \frac{1}{3} \langle \upsilon \rangle \langle \lambda \rangle.$$

Вязкость (динамическая)

$$\eta = \frac{1}{3} \rho \langle \upsilon \rangle \langle \lambda \rangle = D \rho.$$

Теплопроводность

$$\mathfrak{x} = \frac{1}{3} c_{\mathrm{v}} \rho \langle \upsilon \rangle \langle \lambda \rangle = \eta c_{\mathrm{v}},$$

где $c_{\rm v}$ – удельная изохорная теплоемкость.

Примеры решения задач

Задача 1. В баллоне вместимостью V = 6,9 л находится азот массой m = 2,3 г. При нагревании часть молекул диссоциировали на атомы. Степень диссоциации (отношение числа молекул, распавшихся на атомы, к общему числу молекул газа) $\alpha = 0,2$. Определить: 1) общее число N_1 молекул и концентрацию n_1 молекул азота до нагревания; 2) концентрации n_2 молекул и n_3 атомов азота после нагревания.

Дано:

$$V = 6, 9 \text{ m} = 6, 9 \cdot 10^{-3} \text{ m}^3$$

 $m = 2, 3 \text{ r} = 2, 3 \cdot 10^{-3} \text{ kg}$
 $\alpha = 0, 2$
 $N_1 = ? n_1 = ?$

По определению, концентрация частиц газа есть отношение числа газа к занимаемому газом объему:

$$n = \frac{N}{V}$$

1. Число молекул N_1 газа до нагревания найдем из соотношения

$$n_2 = ?$$
 $n_3 = ?$
$$N_1 = v \cdot N_A = \frac{m}{M} \cdot N_A,$$

где V — количество вещества; $N_{\rm A}$ — постоянная Авогадро; M — молярная масса (у азота $M=28\ 10^{-3}\ {\rm кг/моль}).$

Подставляя численные значения, получим

$$N_1 = \frac{2.3 \cdot 10^{-3}}{10^{-3} \cdot 28} \cdot 6,02 \cdot 10^{23} = 4,94 \cdot 10^{23} \text{ молекул, a}$$

$$n_1 = \frac{N_1}{V} = \frac{4,94 \cdot 10^{23}}{6.9 \cdot 10^{-3}} \text{м}^{-3} = 7,16 \cdot 10^{25} \frac{1}{\text{м}^3}.$$

2. Концентрации молекул после нагревания найдем из соотношения

$$n_2 = \frac{N_2}{V} = \frac{N_1(1-\alpha)}{V}$$

где N_2 – число молекул, не распавшихся на атомы. Подставим числовые значения:

$$n_2 = \frac{4,94 \cdot 10^{23} (1 - 0,2)}{6.9 \cdot 10^{-3}} \text{ m}^{-3} = 5,73 \cdot 10^{25} \text{ m}^{-3}.$$

45

Так как каждая молекула после распада дает два атома, то концентрация атомов после нагревания азота будет равна

$$n_3 = \frac{2N_1 \cdot \alpha}{V}$$

Следовательно,

$$n_3 = \frac{2 \cdot 4,94 \cdot 10^{23} \cdot 0,2}{6,9 \cdot 10^{-3}} \text{ m}^{-3} = 2,86 \cdot 10^{25} \text{ m}^{-3}.$$

Задача 2. В закрытом сосуде при температуре 300 К и давлении 0,1 МПа находятся 10 г водорода и 16 г гелия. Считая газы идеальными, определить удельный объем смеси.

Решение.

Согласно закону Дальтона, давление p смеси газов равно сумме парциальных давлений:

$$p = p_1 + p_2$$
. (1)

Из уравнения Клапейрона — Менделеева имеем:

$$p_1 V = \frac{m_1}{M_1} RT$$
 и $p_2 V = \frac{m_2}{M_2} RT$.

Найдя отсюда p_1 и p_2 и подставив в (1), получим:

$$pV = \left(\frac{m_1}{M_1} + \frac{m_2}{M_2}\right) RT.$$

Удельный объем смеси:

$$\frac{\left(\frac{m_1}{M_1} + \frac{m_2}{M_2}\right) \cdot RT}{= (m_1 + m_2) \cdot p}$$

Вычисляя, получаем = $8.63 \text{ м}^3/\text{кг}$.

Задача 3.

Определить, во сколько раз отличаются коэффициенты диффузии азота ($M_1 = 28 \cdot 10^{-3}$ кг/моль) и углекислого газа ($M_2 = 44 \cdot 10^{-3}$ кг/моль), если оба газа находятся при одинаковых температуре и давлении. Эффективные диаметры молекул этих газов считать одинаковыми.

Решение.

Коэффициент диффузии газа:

$$D = \frac{1}{3} \langle \upsilon \rangle \langle l \rangle, \quad (1)$$

где $\langle \upsilon \rangle = \sqrt{\frac{8RT}{\pi M}}$ — средняя арифметическая скорость его молекул; $\langle l \rangle = \frac{1}{\sqrt{2}d^2n}$ —

средняя длина свободного пробега молекул. Поскольку p = nkT, из условия задачи $(T_1 = T_2, p_1 = p_2)$ следует, что $n_1 = n_2$. Подставив значения $\langle \upsilon \rangle, \langle l \rangle$ в формулу (1) и учитывая условие задачи, найдем

$$\frac{D_1}{D_2} = \sqrt{\frac{M_2}{M_1}}.$$

Вычисляя, получаем
$$\frac{D_1}{D_2} = 1,25$$
.

Вопросы и задания:

Вопросы:

- 1. Термодинамический метод исследования. Температурные шкалы. Идеальный газ.
 - 2. Газовые законы.
 - 3. Уравнение состояния идеального газа.
 - 4. Основное уравнение М.К.Т.
- 5. Закон Максвелла о распределении молекул идеального газа по скоростям.
 - 6. Барометрическая формула. Распределение Больцмана.
 - 7. Длина свободного пробега молекул. Опыты, подтверждающие МКТ.
 - 8. Явления переноса.
 - 9. Внутренняя энергия.
 - 10. Закон Больцмана о равномерном распределении молекул.

Задания:

- 1. Сколько молекул газа содержится в баллоне вместимостью V=30 л при температуре T=300 K и давлении p=5 $M\Pi a$?
- 2. В сосуде находится смесь кислорода и водорода. Масса m смеси равна 3,6 г. Массовая доля ω_1 кислорода составляет 0,6. Определить количества вещества v смеси, а также v_1 и v_2 каждого газа в отдельности.
- 3. В баллоне вместимостью V=3 л находится кислород массой m=4 кг. Определить количество вещества v газа и концентрацию n его молекул.
- 4. Определить количество вещества v и число N молекул газа, содержащегося в колбе вместимостью $V=240~{\rm cm}^3$ при температуре $T=290~{\rm K}$ и давлении $p=50~{\rm k}$ Па.
- 5. Определить среднее значение $<\varepsilon>$ полной кинетической энергии одной молекулы следующих газов: гелия, кислорода и водяного пара при температуре $T=400~{\rm K}.$
- 6. Определить число N молекул ртути, содержащихся в воздухе объемом V=1 м³ в помещении, зараженном ртутью, при температуре t=20°C, если давление p насыщенного пара ртути при этой температуре равно 0,13 Па.
- 7. Давление p газа равно 1 мПа, концентрация n его молекул равна 10^{10} см⁻³. Определить: 1) температуру T газа; 2) среднюю кинетическую энергию $< \varepsilon_{\rm n} >$ поступательного движения молекул газа.
- 8. В колбе вместимостью $V=240~{\rm cm}^3$ находится газ при температуре $T=290~{\rm K}$ и давлении $p=50~{\rm k}\Pi$ а. Определить количество вещества v газа и число N его молекул.

- 9. Определить кинетическую энергию, приходящуюся в среднем на одну степень свободы молекулы азота, при температуре T=1 кK, а также среднюю кинетическую энергию $<\varepsilon_n>$ поступательного движения, $<\varepsilon_B>$ вращательного движения и среднее значение полной кинетической энергии $<\varepsilon>$ молекулы.
- 10. Смесь гелия и аргона находится при температуре T=1,2 кК. Определить среднюю квадратичную скорость $< v_{\rm kB} >$ и среднюю кинетическую энергию атомов гелия и аргона.
- 11. Средняя длина свободного пробега $\langle l \rangle$ атомов гелия при нормальных условиях равна 180 нм. Определить диффузию D гелия.
- 12. Диффузия D кислорода при температуре t=0 °C равна 0,19 см²/с. Определить среднюю длину свободного пробега $\langle l \rangle$ молекул кислорода.
- 13. Вычислить диффузию D азота: 1) при нормальных условиях; 2) при давлении p = 100 Па и температуре T = 300 К.
- 14. Определить, во сколько раз отличается диффузия D_1 газообразного водорода от диффузии D_2 газообразного кислорода, если оба газа находятся при одинаковых условиях.
- 15. Определить зависимость диффузии D от температуры T при следующих процессах: 1) изобарном; 2) изохорном.
- 16. Определить зависимость диффузии D от давления p при следующих процессах: 1) изотермическом; 2) изохорном.
- 17. Вычислить динамическую вязкость η кислорода при нормальных условиях.
- 18. Найти среднюю длину свободного пробега $\langle l \rangle$ молекул азота при условии, что его динамическая вязкость $\eta = 17$ мк $\Pi a \cdot c$.
- 19. Найти динамическую вязкость η гелия при нормальных условиях, если диффузия D при тех же условиях равна $1,06 \cdot 10^{-4}$ м²/с.
- 20. Определить зависимость динамической вязкости η от температуры T при следующих процессах: 1) изобарном; 2) изохорном. Изобразить эти зависимости на графиках.

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики.— М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010\ \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Практическое занятие 5-6

Тема 5-6. Основы термодинамики. Основы термодинамики. Начало термодинамики и следствия из них. Реальные газы и жидкости

Цель занятия: рассмотреть основные законы и понятия термодинамики, реальные газы и жидкости

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных законов и понятий термодинамики;

умения – применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные законы и понятия термодинамики в их взаимосвязи, формировать навыки применения законов и понятий термодинамики к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Молярная теплоемкость идеального газа

изохорная
$$C_{_{\mathrm{V}}}=\frac{i}{2}R;$$
 изобарная
$$C_{_{\mathrm{P}}}=\frac{\left(i+2\right)}{2}R\,.$$

Первое начало термодинамики

dQ = dU + dA.

Здесь $dU = vC_v dT$ - изменение внутренней энергии, dA = pdV - совершаемая работа.

Работа расширения газа при процессах

изобарном
$$A = p(V_2 - V_1) = vR(T_2 - T_1);$$
 изотермическом
$$A = vRT \ln \frac{V_2}{V_1} = vRT \ln \frac{p_1}{p_2};$$
 адиабатном
$$A = vC_v(T_1 - T_2) = \frac{vRT_1}{(\gamma - 1)} \left[1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1} \right] = \frac{p_1V_1}{(\gamma - 1)} \left[1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1} \right],$$

где γ — показатель адиабаты: $\gamma = C_p/C_V$.

Уравнения Пуассона

$$\begin{cases} pV^{\gamma} = const, \\ TV^{\gamma-1} = const, \\ T^{\gamma} p^{1-\gamma} = const. \end{cases}$$

Коэффициент полезного действия цикла Карно

$$\eta = \frac{Q - Q_0}{Q} = \frac{T - T_0}{T},$$

где Q — количество теплоты полученное от нагревателя, температура которого T; Q_0 — количество теплоты переданное холодильнику, температура которого T_0 .

Изменение энтропии при переходе

$$S_2 - S_1 = \int_1^2 \frac{dQ}{T}.$$

Примеры решения задач

Задача 1. Определить удельную теплоемкость c_v смеси азота и водорода, если количество вещества газов в смеси одинаковы и равны v.

Решение:

Удельную теплоемкость смеси при постоянном объеме c_{v} найдем из следующих соображений:

1) теплоту, необходимую для нагревания смеси газов на ΔT можно рассчитать по формуле:

$$Q = c_{\rm V} (m_1 + m_2) \cdot \Delta T \tag{1}$$

2) ту же теплоту можно найти и другим способом:

$$Q = \left(c_{V_1} m_1 + c_{V_2} m_2\right) \cdot \Delta T, \qquad (2)$$

где c_{v_1} и c_{v_2} – удельные теплоемкости отдельных газов.

Приравнивая (1) и (2), получим

$$c_{\text{V}}(m_1 + m_2) \cdot \Delta T = (c_{\text{V}_1} m_{_1} + c_{\text{V}_2} m_2) \cdot \Delta T$$
, откуда

$$c_{V} = \frac{c_{V_{1}}m_{1} + c_{V_{2}}m_{2}}{m_{1} + m_{2}} \tag{3}$$

Так как $c_{\rm V} = \frac{i}{2} \frac{R}{M}$, где i – число степеней свободы молекулы.

Поскольку молекулы азота и водорода — двухатомные, то i = 5. Поэтому

$$c_{V_1} = \frac{5}{2} \frac{R}{M_1}, \quad c_{V_2} = \frac{5}{2} \frac{R}{M_2}.$$

Подставляя эти выражения в (3), получим

$$c_{V} = \frac{\frac{5}{2}R\left(\frac{m_{1}}{M_{1}} + \frac{m_{2}}{M_{2}}\right)}{m_{1} + m_{2}} = \frac{\frac{5}{2}R(v_{1} + v_{2})}{m_{1} + m_{2}} = \frac{\frac{5}{2}R \cdot 2v}{m_{1} + m_{2}} = \frac{5Rv}{m_{1} + m_{2}}$$
(4)

Количество вещества $v = \frac{m}{M}$, и $m_1 = v \cdot M_1$, $m_2 = v \cdot M_2$.

В результате формула (4) примет вид

$$c_{\rm V} = \frac{5Rv}{v M_1 + v M_2} = \frac{5R}{M_1 + M_2}$$

Подставляем числовые значения:

$$c_{\rm V} = \frac{5 \cdot 8,31}{28 \cdot 10^{-3} + 2 \cdot 10^{-3}} = 1385 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}.$$

Задача 2. Определить количество теплоты, поглощаемой водородом m=0,2 кг при нагревании его от температуры $t_1 = 0$ °C до температуры $t_2 = 100$ °C при постоянном давлении. Найти также изменение внутренней энергии газа и совершаемую им работу.

Дано: Дано: m = 0.2 кг $t_1 = 0^{\circ}\text{C}; T_1 = 273 \text{ K}$

Количество теплоты Q, поглощаемое газом при изобарном нагревании, определяется по формуле

$$Q = \frac{m}{M} \cdot C_{\rm p} \cdot \Delta T \tag{1}$$

 $t_2 = 100$ °C; $T_2 = 373$ К $Q = \frac{m}{M} \cdot C_p \cdot \Delta T$ (1) $Q = ? \Delta U = ?$ где C_p – молярная теплоемкость газа при постоянном давлении.

Так как $C_p = \frac{i+2}{2} \cdot R^{\dagger}$, то (1) примет вид

$$Q = \frac{i+2}{2} \cdot \frac{m}{M} R \cdot \Delta T$$

водород – двухатомный газ ($M=2\cdot 10^{-3}$ кг/моль), и степеней свободы его молекул i = 5, то

$$Q = \frac{5+2}{2} \cdot \frac{0.2}{2 \cdot 10^{-3}} \cdot 8,31 \cdot 100 = 291 \cdot 10^{3} \left[\frac{\text{кг} \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \text{K}}{\frac{\text{кг}}{\text{моль}}} = \text{Дж} \right] = 291 \text{ кДж}.$$

Внутренняя энергия $U = \frac{i}{2} \frac{m}{M} RT$, следовательно

$$\Delta U = \frac{i}{2} \frac{m}{M} R \Delta T$$
, тогда

$$\Delta U = \frac{5}{2} \cdot \frac{0.2}{2 \cdot 10^{-3}} \cdot 8,31100 = 208 \cdot 10^{3} \left[\frac{\text{кг} \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \text{K}}{\frac{\text{кг}}{\text{моль}}} = \text{Дж} \right] = 208 \text{ кДж}.$$

Работу расширения газа найдем из выражения для первого начала термодинамики: $Q = \Delta U + A$, откуда

$$A = Q - \Delta U = 231 - 208 = 83$$
 кДж.

Задача 3. В цилиндре под поршнем находится водород массой m=0.02 кг при температуре $T_1=300$ К. Водород начал адиабатно расширяться, увеличив свой объем в 5 раз, а затем был сжат изотермически, уменьшив свой объем в 5 раз. Найти температуру T_2 в конце адиабатного расширения и работу A, совершенную газом.

Дано:

$$m=0,02$$
 кг Из уравнения Пуассона для адиабатного процесса имеем $T_1=300$ К
$$\frac{T_2}{T_1}=\left(\frac{V_1}{V_2}\right)^{\gamma-1} \quad (1) \quad , \ \ \partial e \quad \gamma=\frac{i+2}{i}-no\kappa a 3 a m e n b \ a \partial u a \delta a m b i.$$

$$\frac{V_2=5V_1}{T_2=? \quad A=?} \qquad \qquad T_2=Y_3 \text{ по условию} \qquad \qquad T_2=T_1\cdot\left(\frac{V_1}{V_2}\right)^{\gamma-1}=300\cdot\left(\frac{1}{5}\right)^{1,4-1}K=158K.$$
 Из $(1) \quad T_2=T_1\cdot\left(\frac{V_1}{V_2}\right)^{\gamma-1}=300\cdot\left(\frac{1}{5}\right)^{1,4-1}K=158K.$

Работа A_1 газа при адиабатном расширении определяется по формуле

$$A_{\rm I} = \frac{m}{M} C_{\rm V} \cdot (T_{\rm I} - T_{\rm 2}),$$
 где $C_{\rm V} = \frac{i}{2} R$.

Следовательно,

$$A_1 = \frac{i}{2} \frac{m}{M} R(T_1 - T_2) = \frac{5}{2} \cdot \frac{0.02}{2 \cdot 10^{-3}} \cdot 8,31 \cdot (300 - 158)$$
 Дж = 29,5 кДж.

Работа A_2 газа при изотермическом сжатии выражается формулой

$$A_2 = -RT_2 \cdot \frac{m}{M} \ln \frac{V_2}{V_3} = -8,31 \cdot 158 \cdot \frac{0,02}{2 \cdot 10^{-3}} \ln 5 = -21,1$$
 кДж

знак минус означает, что при сжатии работа газа совершена внешними силами.

Полная работа

$$A = A_1 + A_2 = 8,8$$
 кДж.

Задача 4. В цилиндре под поршнем находится водород массой m=0.02 кг при температуре $T_1=300$ К. Водород начал расширяться адиабатно, увеличив свой объем в 5 раз, а затем был сжат изотермически, уменьшив свой объем в 5 раз. Найти температуру T_2 в конце адиабатного расширения и работу A, совершенную газом.

Решение:

Согласно уравнению Пуассона для адиабатного процесса

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma - 1} \tag{1}$$

где γ — показатель адиабаты, $\gamma = \frac{i+2}{i}$ (i=5, т.к. водород двухатомный газ), т.е.

$$\gamma = \frac{5+2}{5} = 1, 4.$$

Из (1)
$$T_2 = T_1 \cdot \left(\frac{V_1}{V_2}\right)^{\gamma - 1} = 300 \cdot \left(\frac{1}{5}\right)^{1, 4 - 1} T_2 = 158 K.$$

Работа A_1 газа при адиабатном расширении определяется по формуле

$$A_{\scriptscriptstyle \rm I} = \frac{m}{M} \, C_{\scriptscriptstyle V} \cdot \left(T_{\scriptscriptstyle \rm I} - T_{\scriptscriptstyle \rm 2} \right), \;\;$$
где $C_{\scriptscriptstyle V} = \frac{i}{2} \, R \;, \;\;$ то есть

$$A_{_{1}} = \frac{i}{2} \frac{m}{M} R \left(T_{_{1}} - T_{_{2}} \right) = \frac{5}{2} \cdot \frac{0.02}{2 \cdot 10^{-3}} \cdot 8,31 \cdot \left(300 - 158 \right) Дж = 29,5 \cdot 10^{3} Дж = 29,5 \kappa Дж.$$

Работа A_2 газа при изотермическом сжатии выражается формулой

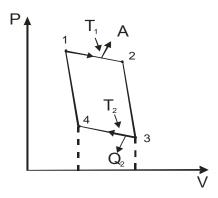
$$A_2 = -RT_2 \cdot \frac{m}{M} \ln \frac{V_2}{V_3} = -8,31 \cdot 158 \cdot \frac{0,02}{2 \cdot 10^{-3}} \ln 5 = -21132$$
Дже = -21κ Дже

знак «-» показывает, что при сжатии работа газа совершена внешними силами. Полная работа

$$A = A_1 + A_2 = 8,5$$
 кДжс

Задача 5. Идеальный газ совершает цикл Карно. Температура T_1 нагревателя равна 470 К, температура T_2 охладителя равна 280 К. При изотермическом расширении газ совершает работу A = 100 Дж. Определить термический к.п.д. η цикла, а также количество теплоты Q_2 , которое газ отдает охладителю при изотермическом сжатии.

Решение:



Термический к.п.д. цикла определяется выражением $\eta = \frac{T_1 - T_2}{T_1}$

Количество теплоты переданное охладителю при изотермическом сжатии (3-4) равно работе совершенной над газом сторонними силами

$$A_{34} = -Q_2 = vRT_2 \ln \frac{V_1}{V_2}$$

$$Q_2 = vRT_2 \ln \frac{V_2}{V_1}$$

Учитывая, что работа газа при изотермическом расширении (1-2)

$$A = \nu R T_1 \ln \frac{V_2}{V_1} \Rightarrow \nu R = \frac{A}{T_1 \ln \frac{V_2}{V_1}}$$
, имеем:

$$Q_2 = \frac{A}{T_1 \ln \frac{V_2}{V_1}} T_2 \ln \frac{V_2}{V_1} = A \frac{T_2}{T_1}$$

Задача 6. Идеальный газ, совершающий цикл Карно, произвел работу A=600 Дж. Температура T_1 нагревателя равна 500 К, T_2 холодильника — 300 К. Определить: 1) термический КПД цикла; 2) количество теплоты, отданное холодильнику за один цикл.

Решение.

Термический КПД цикла Карно

$$\eta = \frac{T_1 - T_2}{T_1}.$$

Количество теплоты, отданное холодильнику,

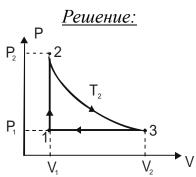
$$Q_2 = Q_1 - A. \quad (1)$$

где $Q_1 = A/\eta$ — количество теплоты, полученной от нагревателя. Подставив это выражение Q_1 в (1), найдем

$$Q_2 = A \left(\frac{1}{\eta} - 1\right).$$

Вычисляя, получаем: 1) $\eta = 0.4$; 2) $Q_2 = 900$ Дж.

Задача 7. Идеальный двухатомный газ, содержащий количество вещества v=1 $\hat{\imath}$ $\hat{\imath}$ $\hat{\imath}$ $\hat{\imath}$ $\hat{\imath}$, находящийся под давлением $p_1=0,1$ МПа при температуре $T_1=300$ K, нагревают при постоянном объеме до давления $p_2=0,2$ МПа. После этого газ изотермически расширился до начального давления и затем изобарически был сжат до начального объема V_1 . Построить график цикла. Определить температуру T газа для характерных точек цикла и его термический к.п.д. η .



Термический к.п.д. $\eta = \frac{Q_{\rm l} - Q_{\rm l}}{Q_{\rm l}}$, где $Q_{\rm l} = Q_{\rm l-2} + Q_{\rm 2-3}$ - количество теплоты,

полученное газом, Q_2 – количество теплоты, переданное охладителю.

1-2 — Изохорный,
$$A = 0$$
; $Q_{1,2} = \Delta U_{1,2}$

$$Q_{1,2} = vCV(T_2 - T_1) = \frac{i}{2}vR(T_2 - T_1); \quad T_2 = \frac{P_2}{P_1}T_1$$

2-3 — Изотермический, $\Delta U = 0$

$$Q_{2,3} = vRT_2 \ln \frac{V_3}{V_1} = vRT_2 \ln \frac{V_2}{V_1}$$

Из уравнения состояния идеального газа выразим значение V_1

$$P_1V_1 = vRT_1 \Longrightarrow V_1 = \frac{vRT_1}{P_1}$$

2-3 – Изотермический процесс ⇒

$$P_2V_1 = P_1V_2 \Rightarrow V_2 = \frac{P_2}{P_1}V_1 = \frac{vRT_1P_2}{P_1^2}$$

$$Q_{1} = \frac{i}{2} vR(T_{2} - T_{1}) + vRT_{2} \ln \frac{P_{2}}{P_{1}}$$

3-2 – Изобарный P = const

$$Q_{3\to 2} = v \frac{i+2}{i} R \left(T_2 - T_1\right)$$

$$\eta = \frac{\frac{i}{2} vR \left(T_2 - T_1\right) + vRT_2 \ln \frac{P_2}{P_1} - vR \frac{v+2}{2} \left(T_2 - T_1\right)}{\frac{i}{2} vR \left(T_2 - T_1\right) + vRT_2 \ln \frac{P_2}{P_1}} = \frac{T_2 \ln \frac{P_2}{P_1} - \left(T_2 - T_1\right)}{\frac{i}{2} \left(T_2 - T_1\right) + T_2 \ln \frac{P_2}{P_1}}$$

Вычислим:

$$T_2 = \frac{2 \cdot 10^6 \,\Pi a}{10^5 \,\Pi a} \cdot 300K = 600K$$

$$\eta = \frac{600K \cdot \ln \frac{8 \cdot 10^6 \,\Pi a}{10^5 \,\Pi a} - (600K - 300K)}{\frac{5}{2} 300K + 600K \ln 20}$$

$$\eta = 0,099; \quad \eta = 9,9\%$$

Задача 8. Найти изменение ΔS энтропии при нагревании воды массой m=100 г от температуры $t_1=0$ °C до температуры $t_2=100$ °C и последующем превращении воды в пар при той же температуре.

Решение:

Определим изменение энтропии ΔS как сумму изменения энтропии ΔS_1 при нагреве воды и изменения энтропии ΔS_2 при ее превращении в пар:

$$\Delta S = \Delta S_1 + \Delta S_2$$

Известно, что

$$\Delta S = \int \frac{dQ}{T}.$$

При нагревании $dQ = mc \cdot dT$, где c — удельная теплоемкость воды, $c = 4200 \frac{\mathcal{J} \mathcal{H}}{\kappa c \cdot K}$, тогда

$$\Delta S_1 = \int_{T_1}^{T_2} \frac{mc \cdot dT}{T} = mc \ln \frac{T_2}{T_1} = 0, 1 \cdot 4200 \cdot \ln \frac{373}{273} = 132 \frac{\text{Дж}}{K}.$$

При превращении воды в пар температура не изменяется, значит

$$\Delta S_2 = \frac{1}{T} \int_1^2 dQ = \frac{Q}{T},$$

где Q – количество теплоты, переданное воде для превращения ее в пар,

$$Q = r \cdot m$$
,

где r — удельная теплота парообразования,

$$r=22,5\cdot10^5\,\frac{\cancel{\mathcal{A}\mathscr{H}}}{\cancel{\kappa}^2}\,,$$

$$\Delta S_2=\frac{rm}{T}=\frac{22,5\cdot10^5\cdot0,1}{373}=603\,\frac{\cancel{\mathcal{A}\mathscr{H}}}{K}\,,\quad\text{тогда}$$
 56

$$\Delta S = 132 \frac{\cancel{\square} \cancel{\cancel{M}}}{\cancel{K}} + 603 \frac{\cancel{\square} \cancel{\cancel{M}}}{\cancel{K}} = 735 \frac{\cancel{\square} \cancel{\cancel{M}}}{\cancel{K}}.$$

Задача 9. Определить изменение энтропии ΔS при изотермическом расширении азота массой m=10 г, если давление газа уменьшилось от $p_1=0,1$ МПа до $p_2=50$ кПа.

Решение.

Изменение энтропии, учитывая, что процесс изотермический,

$$\Delta S = \int_{1}^{2} \frac{\mathrm{d}Q}{T} = \frac{1}{T} \int_{1}^{2} \mathrm{d}Q = \frac{Q}{T}. \quad (1)$$

Согласно первому началу термодинамики, количество теплоты, полученное газом, $Q = A + \Delta U$. Для изотермического процесса $\Delta U = 0$, поэтому Q = A. Работа газа в изотермическом процессе

$$A = \frac{m}{M} RT \ln \frac{V_2}{V_1} = \frac{m}{M} RT \ln \frac{p_1}{p_2}.$$
 (2)

Подставив (2) в (1), найдем искомое изменение энтропии:

$$\Delta S = \frac{m}{M} R \ln \frac{p_1}{p_2}.$$

Вычисляя, получаем $\Delta S = 2,06 \text{ Дж/К}$.

Вопросы и задания:

Вопросы:

- 1. Основные законы термодинамики.
- 2. Первое начало термодинамики.
- 3. Работа, совершаемая газом при изменении объема. Работа газа при различных процессах.
- 4. Адиабатический процесс. Уравнение Пуассона.
- 5. Энтропия. Неравенство Клаузиуса.
- 6. Статистическое истолкование энтропии.
- 7. Второе начало термодинамики.
- 8. Тепловой двигатель. Теорема Карно.
- 9. Холодильная машина.
- 10. Цикл Карно.

Задания:

1. Смесь газов состоит из аргона и азота, взятых при одинаковых условиях и в одинаковых объемах. Определить показатель адиабаты γ такой смеси.

- 2. Найти показатель адиабаты γ для смеси газов, содержащей гелий массой m_1 =10 г и водород массой m_2 =4 г.
- 3. Смесь газов состоит из хлора и криптона, взятых при одинаковых условиях и равных объемах. Определить удельную теплоемкость c_p смеси.
- 4. Определить удельную теплоемкость c_v смеси газов, содержащей V_1 =5 л водорода и V_2 =3 л гелия. Газы находятся при одинаковых условиях.
- 5. Каковы удельные теплоемкости c_v и c_p смеси газов, содержащей кислород массой m_1 =10 г и азот массой m_2 =20 г?
- 6. Определить показатель адиабаты γ частично диссоциировавшего газообразного азота, степень диссоциации α которого равна 0,4.
- 7. Азот массой m=5 кг, нагретый на $\Delta T=150$ К, сохранил неизменный объем V. Найти: 1) количество теплоты Q, сообщенное газу; 2) изменение ΔU внутренней энергии; 3) совершенную газом работу A.
- 8. Водород занимает объем V_1 =10 м³ при давлении p_1 =100 кПа. Газ нагрели при постоянном объеме до давления p_2 =100 кПа. Определить: 1) изменение ΔU внутренней энергии газа; 2) совершенную газом работу A; 3) количество теплоты Q, сообщенное газу.
- 9. Определить удельную теплоемкость c_v смеси ксенона и кислорода, если количества вещества газов в смеси одинаковы и равны v.
- 10. Определить удельную теплоемкость c_p смеси кислорода и азота, если количество вещества v_1 первого компонента равно 2 моль, а количество вещества v_2 второго равно 4 моль.
- 11. Воздух, занимавший объем V_1 =10 л при давлении p_1 =100 кПа, был адиабатически сжат до объема V_2 =1 л. Под каким давлением p_2 находится воздух после сжатия?
- 12. В цилиндре под поршнем находится водород массой m=0,02 кг при температуре T_1 =300 К. Водород сначала расширился адиабатически, увеличив свой объем в пять раз, а затем был сжат изотермически, причем объем газа уменьшился в пять раз. Найти температуру T_2 в конце адиабатического расширения и полную работу A, совершенную газом. Изобразить процесс графически.
- 13. Водород при нормальных условиях имел объем V_1 =100 м³. Найти изменение ΔU внутренней энергии газа при его адиабатическом расширении до объема V_2 =150 м³.
- 14. При адиабатическом сжатии кислорода массой m=1 кг совершена работа A=100 кДж. Определить конечную температуру T_2 газа, если до сжатия кислород находился при температуре $T_1=300$ К.
- 15. Расширяясь, водород совершил работу A=6 кДж. Определить количество теплоты Q, подведенное к газу, если процесс протекал: 1) изобарически; 2) изотермически.
- 16. Горючая смесь в двигателе дизеля воспламеняется при температуре T_2 =1,1 кК. Начальная температура смеси T_2 =350 К. Во сколько раз нужно уменьшить объем смеси при сжатии, чтобы она воспламенилась? Сжатие считать адиабатическим. Показатель адиабаты γ для смеси принять равным 1,4.

- 17. Из баллона, содержащего водород под давлением p_1 =1 МПа при температуре T_1 =300 K, выпустили половину находившегося в нем газа. Определить конечную температуру T_2 и давление p_2 , считая процесс адиабатическим.
- 18. Определить работу A адиабатического расширения водорода массой m=4 г, если температура газа понизилась на ΔT =10 K.
- 19. Азот массой m=2 г, имевший температуру $T_1=300$ К, был адиабатически сжат так, что его объем уменьшился в n=10 раз. Определить конечную температуру T_2 газа и работу A сжатия.
- 20. Кислород, занимавший объем V_1 =1 л под давлением p_1 =1,2 МПа, адиабатически расширился до объема V_2 =10л. Определить работу A расширения газа.
- 21. Наименьший объем V_1 газа, совершающего цикл Карно, равен 153 л. Определить наибольший объем V_3 , если объем V_2 в конце изотермического расширения и объем V_4 в конце изотермического сжатия соответственно равны: 600 л и 189 л.
- 22. Идеальный газ, совершающий цикл Карно, получив от нагревателя количество теплоты Q_1 =4,2 кДж, совершил работу A=590 Дж. Найти термический КПД η этого цикла. Во сколько раз температура T_1 нагревателя больше температуры T_2 охладителя?
- 23. Идеальный газ, совершает цикл Карно. Температура T_1 нагревателя в три раза выше температуры T_2 охладителя. Нагреватель передал газу количество теплоты Q_1 =42 кДж. Какую работу A совершил газ?
- 24. Идеальный газ, совершающий цикл Карно, 2/3 количества теплоты Q_1 , полученного от нагревателя, отдает охладителю. Температура T_2 охладителя равна 280 К. Определить температуру T_1 нагревателя.
- 25. Идеальный многоатомный газ совершат цикл, состоящий из двух изохор и двух изобар, причем наибольшее давление газа в два раза больше наименьшего, а наибольший объем в четыре раза больше наименьшего. Определить термический КПД η цикла.
- 26. Идеальный двухатомный газ, содержащий количество вещества v=1 моль, совершает цикл, состоящий из двух изохор и двух изобар. Наименьший объем $V_{\min}=10$ л, наибольший $V_{\max}=20$ л, наименьшее давление $p_{\min}=246$ кПа, наибольшее $p_{\min}=410$ кПа. Построить график цикла. Определить температуру T газа для характерных точек цикла и его термический КПД η .
- 27. Совершая замкнутый процесс, газ получил от нагревателя количество теплоты Q_1 =4 кДж. Определить работу A газа при протекании цикла, если его термический КПД $\eta = 0,1$.
- 28. Идеальный газ совершает цикл Карно. Температура T_2 охладителя равна 290 К. Во сколько раз увеличится КПД цикла, если температура нагревателя повысится от T'_1 =400 К до T''_1 =600 К?
- 29. Идеальный газ совершает цикл Карно. Температура T_1 нагревателя в четыре раза выше температура T_2 охладителя. Какую долю ω количества теплоты, получаемого за один цикл от нагревателя, газ отдает охладителю?

- 30. Идеальный газ совершает цикл Карно. Работа A_1 изотермического расширения газа равна 5 Дж. Определить работу A_2 изотермического сжатия, если термический КПД η цикла равна 0,2.
- 31. Лед массой m_1 =2 кг при температуре t_1 =0°C был превращен в воду той же температуры с помощью пара, имеющего температуру t_2 =100°C. Определить массу m_2 израсходованного пара. Каково изменение ΔS энтропии системы лед пар?
- 32. Кусок льда массой m=200 г, взятый при температуре t_1 = 10 °C, был нагрет до температуры t_2 =0°C и расплавлен, после чего образовавшаяся вода была нагрета до температуры t_3 =10°C. Определить изменение ΔS энтропии в ходе указанных процессов.
- 33. Найти изменение ΔS энтропии при изобарическом расширении азота массой m=4 г от объема $V_1=5$ л до объема $V_2=9$ л.
- 34. В результате изохорического нагревания водорода массой m=1 г давление p газа увеличилось в два раза. Определить изменение ΔS энтропии газа.
- 35. Смешали воду массой m_1 =5 кг при температуре T_1 =280 К с водой массой m_2 =8 кг при температуре T_2 =350 К. Найти 1) температуру θ смеси; 2) изменение ΔS энтропии, происходящие при смешивании.
- 36. Кислород массой m=2 кг увеличил свой объем в n=5 раз один раз изотермически, другой адиабатически. Найти изменения энтропии в каждом из указанных процессов.
- 37. Водород массой m_2 =100 г был изобарически нагрет так, что объем его увеличился в n=3 раза, затем водород был изохорически охлажден так, что давление его уменьшилось в n=3 раза. Найти изменение ΔS энтропии в ходе указанных процессов.
- 38. Идеальный двухатомный газ, содержащий количество вещества v=1 моль, находящийся под давлением $p_1=0,1$ МПа при температуре $T_1=300$ К, нагревают при постоянном объеме до давления $p_1=0,2$ МПа. После этого газ изотермически расширился до начального давления и затем был изобарически сжат до начального объема V_1 . Построить график цикла. Определить температуру T газа для характерных точек цикла и его термический КПД η .
- 39. Одноатомный газ, содержащий количество вещества v=0,1 кмоль, под давлением p_1 =100 МПа занимал объем V_1 =5 м³. Газ сжимался изобарически до объема V_2 =1 м³, затем сжимался адиабатически и расширялся при постоянной температуре до начальных значений объема и давления. Построить график процесса. Найти: 1) температуры T_1 , T_2 , объем V_3 и давления p_2 , p_3 , соответствующие характерным точкам цикла; 2) количество теплоты Q_1 , полученное газом от нагревателя; 3) количество теплоты Q_2 , переданное газом охладителю; 4) работу A, совершенную газом за весь цикл; 5) термический КПД η цикла.
- 40. Идеальный газ совершает цикл Карно. Температура T_1 нагревателя равна 470 К, температура T_2 охладителя равна 280 К. При изотермическом расширении газ совершает работу A=100 Дж. Определить термический КПД η цикла, а также

количество теплоты Q_2 , которое газ отдает охладителю при изотермическом сжатии.

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010\ \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Раздел 3. Электричество.

Практическое занятие 7.

Тема 7. Электростатика. Электрические заряды и закон сохранения заряда. Закон Кулона. Электрическое поле. Напряженность поля. Теорема Гаусса для напряженности электрического поля. Потенциал. Разность потенциалов. Связь напряженности и разности потенциалов. Диэлектрики в электрическом поле. Проводники в электростатическом поле. Электроемкость проводников. Конденсаторы.

Цель занятия: рассмотреть основные законы электростатики.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных законов электростатики;

умения- применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные законы электростатики в их взаимосвязи, формировать навыки применения законов электростатики к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того, она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Закон Кулона
$$\vec{F} = \frac{q_1 q_2}{4\pi \varepsilon_0 \varepsilon r^2} \frac{\dot{r}}{r},$$

где q_1 и q_2 – величины точечных зарядов, ε_0 – электрическая постоянная, ε – диэлектрическая проницаемость среды, r – расстояние между зарядами.

Напряженность электрического поля
$$\vec{E} = \frac{F}{q}.$$

Напряженность поля

$$E = \frac{q}{4\pi\varepsilon_0\varepsilon r^2};$$

бесконечно длинной заряженной нити

$$E = \frac{\tau}{2\pi\varepsilon_0\varepsilon \cdot r};$$

равномерно заряженной бесконечной плоскости

$$E = \frac{\sigma}{2\varepsilon_0 \varepsilon},$$

где τ – линейная плотность заряда, σ – поверхностная плотность заряда, r – расстояние до источника поля.

Дипольный момент

$$\vec{P} = q\vec{l}$$
 .

Индукция электрического поля (электрическое смещение)

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E}$$
.

Работа перемещения заряда

в электростатическом поле

$$A = q \int E_l dl = q(\varphi_1 - \varphi_2),$$

где φ_1 и φ_2 – потенциалы начальной и конечной точек.

Потенциал поля точечного заряда

$$\varphi = \frac{q}{4\pi\varepsilon_0\varepsilon r}.$$

Связь между потенциалом и напряженностью

$$E_l = -\frac{d\varphi}{dl}.$$

Сила притяжения между двумя разноименно заряженными

обкладками конденсатора

$$F = \frac{\varepsilon_0 \varepsilon E^2 S}{2} = \frac{q^2}{2\varepsilon_0 \varepsilon \cdot S},$$

где S — площадь пластин.

Электроемкость:

уединенного проводника
$$C = \frac{q}{\varphi};$$
 плоского конденсатора
$$C = \frac{\varepsilon_0 \varepsilon S}{d};$$
 слоистого конденсатора
$$C = \frac{\varepsilon_0 S}{\sum d_i/\varepsilon_i},$$
 шара
$$C = 4\pi \varepsilon_0 \varepsilon R,$$

где d — расстояние между пластинами конденсатора, $d_{\rm i}$ — толщина i-го слоя диэлектрика, $\varepsilon_{\rm i}$ — его диэлектрическая проницаемость, R — радиус шара.

Электроемкость батареи конденсаторов, соединенных:

параллельно
$$C = \sum C_{\rm i};$$
 последовательно
$$\frac{1}{C} = \sum \frac{1}{C_{\rm i}}.$$

Энергия поля:

заряженного проводника $W_{\Im} = \frac{C\phi^2}{2} = \frac{q^2}{2C} = \frac{q\phi}{2};$ заряженного конденсатора $W_{\Im} = \frac{1}{2}\varepsilon_0\varepsilon E^2V,$

где V – объем конденсатора.

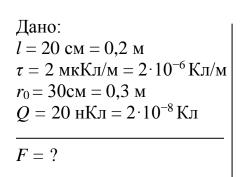
Объемная плотность энергии

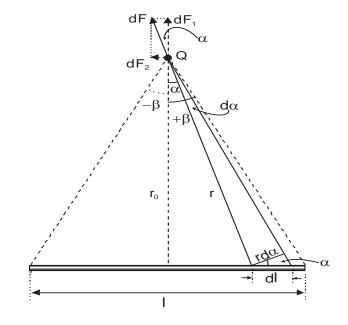
электрического поля

$$W_{9} = \frac{\varepsilon_{0}\varepsilon E^{2}}{2} = \frac{D^{2}}{2\varepsilon_{0}\varepsilon} = \frac{ED}{2}.$$

Примеры решения задач

Задача 1. Тонкий стержень длиной 20 см несет равномерно распределенный по длине заряд с линейной плотностью $\tau = 2$ мкКл/м. На расстоянии 30 см от стержня находится заряд 20 нКл, равноудаленный от концов стержня. Найти силу взаимодействия заряда и стержня.





Выделим на стержне элементарный участок длиной dl. Заряд его $dQ = \tau dl$ можно рассматривать как точечный. Тогда по закону Кулона сила взаимодействия между Q_1 и dQ равна

$$dF = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot \tau \cdot dl}{r^2},$$

где r — расстояние от выделенного участка до заряда Q_1 (см. рис.). Из рисунка следует, что $r = \frac{r_0}{\cos \alpha}$, $dl = \frac{r d \alpha}{\cos \alpha}$, где r_0 — расстояние от Q_1 до стержня.

Подставив выражения для r и dl в формулу для силы dF получим, что

$$dF = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot \tau \cdot rd\alpha}{\frac{r_0^2}{\cos^2 \alpha} \cdot \cos \alpha} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot \tau \cdot r_0 \cdot d\alpha}{\frac{r_0^2 \cdot \cos \alpha}{\cos \alpha}} = \frac{Q_1 \tau d\alpha}{4\pi\varepsilon_0 r_0}.$$

Это векторная величина; разложим $d\vec{F}$ на составляющие: перпендикулярную стержню $d\vec{F}_1$ и параллельную ему $d\vec{F}_2$. Очевидно,

$$dF_1=dF\cdot\coslpha$$
 , $dF_2=dF\cdot\sinlpha$, тогда $dF_1=rac{Q_1 au\coslpha}{4\piarepsilon_0r_0}dlpha$, $dF_2=rac{Q_1 au\sinlpha}{4\piarepsilon_0r_0}dlpha$

Проинтегрируем полученные выражения для сил в пределах изменения угла α от $-\beta$ до β .

$$F_{1} = \int_{-\beta}^{\beta} \frac{Q_{1}\tau \cos \alpha}{4\pi\varepsilon_{0}r_{0}} d\alpha = \frac{Q_{1}\tau}{4\pi\varepsilon_{0}r_{0}} \cdot \left|\sin \alpha\right|_{-\beta}^{+\beta} = \frac{Q_{1}\tau}{2\pi\varepsilon_{0}r_{0}} \sin \beta$$

$$F_{2} = \int_{-\beta}^{\beta} \frac{Q_{1}\tau \sin \alpha}{4\pi\varepsilon_{0}r_{0}} d\alpha = -\frac{Q_{1}\tau}{4\pi\varepsilon_{0}r_{0}} \cdot \left|\cos \alpha\right|_{-\beta}^{+\beta} = 0.$$

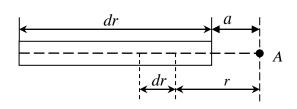
В результате получим, что $F = F_1 = \frac{Q_1 \tau}{2\pi \varepsilon_0 r_0} \sin \beta$.

Величину $\sin \beta$ определим из рисунка:

$$\sin \beta = \frac{\frac{l}{2}}{\sqrt{r_0^2 + \frac{l^2}{4}}} = \frac{l}{\sqrt{4r_0^2 + l^2}}$$
 и подставим в выражение для силы F .
$$F = \frac{Q_1 \tau}{2\pi \varepsilon_0 r_0} \cdot \frac{l}{\sqrt{4r_0^2 + l^2}} = \frac{2 \cdot 10^{-8} \cdot 2 \cdot 10^{-6}}{2 \cdot 3.14 \cdot 8.85 \cdot 10^{-12} \cdot 0.3} \cdot \frac{0.2}{\sqrt{4 \cdot (0.3)^2 + (0.2)^2}} = 0.76 \cdot 10^{-3} \text{ H}$$

Задача 2. Тонкий стержень длиной l=10 см несет равномерно распределенный заряд Q=1 нКл. Определить потенциал φ электрического поля в точке, лежащей на оси стержня на расстоянии a=20 см от ближайшего его конца.

Дано:
$$l = 10 \text{ см} = 0.1 \text{ м}$$
 $Q = 1 \text{нКл} = 10^{-9} \text{Кл}$ $a = 20 \text{ см} = 0.2 \text{ м}$ $\varphi - ?$



Выделим на стержне элементарный участок длиной dr. Заряд на стержне распределен равномерно, следовательно, его линейная плотность $\tau = \frac{Q}{l}$ и на участке длиной dr размещен заряд $dQ = \tau \cdot dr$. Этот заряд можно считать точечным. Тогда потенциал электрического поля этого заряда в точке A равен

$$d\varphi = \frac{dQ}{4\pi\varepsilon_0 r} = \frac{\tau dr}{4\pi\varepsilon_0 r} = \frac{Q}{4\pi\varepsilon_0 l} \frac{dr}{r}$$
 (1)

где r – расстояние от элементарного участка dr до точки A.

Из принципа суперпозиции следует, что общий потенциал равен сумме потенциалов всех элементарных зарядов стержня.

Поэтому интегрируем выражение (1) для $d\varphi$ в пределах изменения dr от a до l+a:

$$\varphi = \int_{a}^{l+a} \frac{Q}{4\pi\varepsilon_{0}l} \frac{dr}{r} = \frac{Q}{4\pi\varepsilon_{0}l} \int_{a}^{l+a} \frac{dr}{r} = \frac{Q}{4\pi\varepsilon_{0}l} \ln \frac{l+a}{\dot{a}} = \frac{10^{-9}}{4\cdot3,14\cdot8,85\cdot10^{-12}\cdot0,1} \cdot \ln \frac{0,1+0,2}{0,2} = 36,5 \text{ B}.$$

Задача 3. Конденсатор емкостью $C_0 = 20$ мкФ заряжают до разности потенциалов $U_0 = 400$ В и подключают к конденсатору емкостью C = 1 мкФ, в результате чего последний заряжается. Отключив этот конденсатор, заряжают таким же образом второй конденсатор той же емкости (C = 1мкФ), затем третий, четвертый и т.д. Затем конденсаторы соединяют последовательно. Какую максимальную разность потенциалов можно получить таким образом?

Дано: $C_0 = 20 \text{ мк}\Phi = 20 \cdot 10^{-6} \Phi$ $U_0 = 400 \text{ B}$ $C = 1 \text{мк}\Phi$ U = ?

Начальный заряд конденсатора емкостью C_0 будет равным $Q_0 = C_0 \cdot U$.

После подключения к нему конденсатора емкостью C заряд Q_0 распределяется между C_0 и C. После отсоединения C от C_0 на обоих конденсаторах будет одинаковая разность потенциалов (т.к. их соединение было параллельным).

$$U_1 = \frac{Q_0}{C_0 + C} = \frac{C_0 U_0}{C_0 + C}.$$

На конденсаторе C_0 останется заряд $Q_1 = C_0 \cdot U_1 = \frac{C_0^2 U_0}{C_0 + C}$.

При последующем подключении второго конденсатора C на конденсаторе C_0 останется заряд $Q_2 = C_0 \cdot U_2$.

Причем
$$U_2 = \frac{C_2 U_2}{C_0 + C} = \left(\frac{C_0}{C_0 + C_1}\right)^2 U_0.$$

Повторяя эту операцию n раз, мы будем иметь набор конденсаторов, заряженных до напряжений U_1 , U_2 , U_3 ,..., $U_n (n=1,2,3,...)$. $U_n = U_0 \left(\frac{C_0}{C_0 + C} \right)^n$.

Общее напряжение после последовательного соединения всех n конденсаторов будет равно

$$U = U_1 + U_2 + U_3 + \dots = \frac{C_0 U_0}{C_0 + C} \left(1 + \frac{C_0}{C_0 + C} + \frac{C_0^2}{\left(C_0 + C\right)^2} + \dots + \frac{C_0^n}{\left(C_0 + C\right)^n} \right).$$

Просуммировав полученную бесконечную убывающую геометрическую прогрессию найдем её сумму равную максимальной разности потенциалов U:

$$U = \frac{C_0 U_0}{C} = \frac{20 \cdot 10^{-6} \cdot 400}{10^{-6}} = 8000 \,\mathrm{B}.$$

Задача 4. Батарею, состоящую из двух конденсаторов емкостями 4 и 5 мкФ каждый, соединили последовательно и включили в сеть с напряжением 220 В. Потом батарею отключили от сети, а конденсаторы разъединили и соединили параллельно обкладками, имеющими одноименные заряды. Каким будет напряжение на зажимах полученной батареи?

$$Q_1 = Q_2 = \ldots = Q$$

Емкость батареи последовательно соединенных конденсаторов вычисляется по формуле

$$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i}$$
.

Емкость батареи из двух конденсаторов равна $C = \frac{C_1 C_2}{C_1 + C_2}$,

а их заряд
$$Q = CU_1 = \frac{C_1C_2}{C_1 + C_2}U_1$$
.

При отключении конденсаторов заряд каждого из них сохранится. При их соединении будет равен сумме зарядов конденсаторов $Q' = Q_1 + Q_2 = 2Q$, а емкость батареи будет равна сумме емкостей $C' = C_1 + C_2$. Общее напряжение станет равным

$$U_2 = \frac{Q'}{C'} = \frac{Q_1 + Q_2}{C_1 + C_2} = \frac{2Q}{C_1 + C_2}.$$

Подставляя в полученное выражение формулу для Q, получим:

$$U_2 = \frac{2C_1C_2U_1}{(C_1 + C_2)^2} = \frac{2 \cdot 4 \cdot 10^{-6} \cdot 5 \cdot 10^{-6} \cdot 220}{(4 \cdot 10^{-6} + 5 \cdot 10^{-6})^2} = 108,6 \text{ B}$$

Задача 5. Какое количество теплоты Q выделится при разрядке плоского воздушного конденсатора, если разность потенциалов между пластинами равна 10 кВ, расстояние d=0,5 мм, а площадь S каждой пластины равна 100 см²?

Дано: $U=10 \text{ kB}=10^4 \text{ B}$ $d=0.5 \text{ MM}=5\cdot10^{-4} \text{ M}$ $S=100 \text{ cm}^2=10^{-2} \text{ m}^2$ O = ?

Согласно закону сохранения энергии, количество теплоты Q, выделившееся в конденсаторе при его разрядке, равно энергии заряженного конденсатора

$$Q = \frac{CU^2}{2}$$

Емкость плоского конденсатора определяется по формуле

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$
,

где ε – диэлектрическая проницаемость среды (для воздуха ε =1). Значит

$$Q = \frac{\varepsilon_0 SU^2}{2d} = \frac{8,85 \cdot 10^{-12} \cdot 10^{-2} \cdot 10^8}{2 \cdot 5 \cdot 10^{-4}} = 8,85 \cdot 10^{-3} \text{ Дж=8,85 мДж.}$$

Задача 6. Диполь с электрическим моментом P=50 пКл·м свободно устанавливается в однородном электрическом поле напряженностью $E = 30 \frac{\text{кB}}{\text{c}}$.

Найти работу, необходимую для поворота диполя на угол α =30°.

P = 50пКл·м= $5 \cdot 10^{-11}$ Кл·м

 $E = 30 \frac{\text{kB}}{\text{M}} = 3 \cdot 10^4 \frac{\text{B}}{\text{M}}$ $\alpha = 30^{\circ}$

A = ?

Элементарная работа при повороте диполя на угол

$$dA = M \cdot d\alpha$$
,

где $M = P \cdot E \cdot \sin \alpha$ - механический момент сил, действующий на диполь. α – угол между векторами \vec{E} и \vec{P} . Таким образом $dA = P \cdot E \cdot \sin \alpha \cdot d\alpha$.

При свободном положении диполь в электрическом поле $\alpha = 0$, значит полная работа может быть рассчитана по формуле

$$A = \int_{0}^{\alpha} P \cdot E \sin \alpha \cdot d\alpha = -PE \cdot \cos \alpha \Big|_{0}^{\alpha}.$$

$$A = -5 \cdot 10^{-11} \cdot 3 \cdot 10^{4} \Big(\cos 30^{\circ} - \cos 0^{\circ}\Big) = 2 \cdot 10^{-7} \text{ Дж=0,2 мкДж.}$$

Вопросы и задания:

Вопросы:

1. Электрический заряд и его свойства. Закон сохранения заряда. Закон Кулона.

- 2. Напряженность электростатического поля. Линии напряженности электростатического поля. Поток вектора напряженности.
 - 3. Принцип суперпозиции. Поле диполя.
 - 4. Теорема Гаусса для электростатического поля в вакууме.
 - 5. Применение теоремы Гаусса к расчету полей в вакууме.
 - 6. Циркуляция вектора напряженности электростатического поля.
 - 7. Потенциал электростатического поля. Разность потенциалов.
- 8. Связь между напряженностью и потенциалом. Вычисление разности потенциалов по напряженности поля.
- 9. Диэлектрики. Поляризованность диэлектриков. Напряженность поля в диэлектрике.
- 10. Теорема Гаусса для поля в диэлектрике. Условия на границе раздела двух диэлектрических сред.
- 11. Проводники в электростатическом поле. Электроемкость. Соединение конденсаторов в батареи.
- 12. Энергия системы зарядов и уединённого проводника. Энергия конденсатора. Энергия электростатического поля

Задания:

- 1. Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью $\sigma_1 = 10 \text{ нКл/м}^2 \text{ и } \sigma_2 = -30 \text{ нКл/м}^2$. Определить силу взаимодействия между пластинами, приходящуюся на площадь S, равную 1 м^2 .
- 2. Две прямоугольные одинаковые параллельные пластины, длины сторон которых a=10 см и b=15 см, расположены на малом (по сравнению с линейными размерами пластин) расстоянии друг от друга. На одной из пластин равномерно распределен заряд $Q_1=50$ нКл, на другой заряд $Q_2=150$ нКл. Определить напряженность E электрического поля между пластинами.
- 3. На отрезке тонкого прямого проводника длиной l=10 см равномерно распределен заряд с линейной плотностью $\tau=3$ мкКл/м. Вычислить напряженность E, создаваемую этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное его длине.
- 4. В вершинах квадрата находятся одинаковые заряды Q = 0,3нКл каждый. Какой отрицательный заряд Q_1 нужно поместить в центре квадрата, чтобы система зарядов находилась в положении равновесия?
- 5. Электрическое поле создано двумя точечными зарядами $Q_1 = 40$ нКл и $Q_2 = -10$ нКл, находящимися на расстоянии d = 10 см друг от друга. Определить напряженность E поля в точке, удаленной от первого заряда на $r_1 = 12$ см и от второго на $r_2 = 6$ см.
- 6. Три одинаковых заряда Q=1 нКл каждый расположены по вершинам равностороннего треугольника. Какой отрицательный заряд Q_1 нужно поместить в центре треугольника, чтобы система зарядов находилась в положении равновесия? Будет ли это равновесие устойчивым?

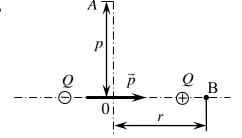
- 7. Тонкая нить длиной l=20см равномерно заряжена с линейной плотностью $\tau=10$ нКл/м. На расстоянии a=10см от нити, против ее середины, находится точечный заряд Q=1 нКл. Вычислить силу F, действующую на этот заряд со стороны заряженной нити.
- 8. В вершинах правильного шестиугольника со стороной a=10 см расположены точечные заряды Q, 2Q, 3Q, 4Q, 5Q, 6Q (Q=0,1 мкКл). Найти силу F, действующую на точечный заряд Q, лежащий в плоскости шестиугольника, равноудаленный от его вершин и равный заряду Q.
- 9. Тонкий длинный стержень равномерно заряжен с линейной плотностью τ заряда, равной 10 мкКл/м. На продолжении оси стержня на расстоянии a=20 см от его конца находится точечный заряд Q = 10 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда.
- 10. Расстояние между двумя точечными зарядами Q_1 =1 мкКл и Q_2 = Q_1 равно 10 см. Определить силу F, действующую на точечный заряд Q=0.1 мкКл, удаленный на r_1 = 6 см от первого и на r_2 =8 см от второго зарядов.
- 11. Тонкие стержни образуют квадрат со стороной длиной a. Стержни заряжены с линейной плотностью $\tau = 13$ нКл/м. Найти потенциал φ в центре квадрата.
- 12. Заряд распределен равномерно по бесконечной плоскости с поверхностной плотностью $\sigma=10~{\rm HKn/m^2}.$ Определить разность потенциалов $\Delta \varphi$ двух точек поля, одна из которых находится на плоскости, а другая находится напротив и удалена от плоскости на расстояние $d=10{\rm cm}.$
- 13. Две бесконечные параллельные плоскости находятся на расстоянии d=0.5 см друг от друга. На плоскостях равномерно распределены заряды с поверхностными плотностями $\sigma_1=0.2$ мкКл/м² и $\sigma_2=0.3$ мкКл/м². Определить разность потенциалов U между плоскостями.
- 14. Сто одинаковых капель ртути, заряженных до потенциала φ =20 В, сливаются в одну большую каплю. Каков потенциал φ_1 образовавшейся капли?
- 15. Две бесконечные параллельные плоскости находятся на расстоянии d=1 см друг от друга. Плоскости несут равномерно распределенные по поверхностям заряды с плотностями σ_1 =0,2 мкКл/м² и σ_2 =0,5 мкКл/м². Найти разность потенциалов U между пластинами.
- 16. Бесконечно длинная тонкая прямая нить несет равномерно распределенный по длине нити заряд с линейной плотностью τ =0,01 мкКл/м. Определить разность потенциалов $\Delta \varphi$ двух точек поля, удаленных от нити на r_1 = 2cм и r_2 = 4cм.
- 17. Определить потенциальную энергию Π системы четырех точечных зарядов, расположенных в вершинах квадрата со стороной длиной a=10см. Заряды одинаковы по абсолютному значению Q=10нКл, но два из них отрицательны. Рассмотреть два возможных случая расположения зарядов.
- 18. Какова потенциальная энергия Π системы четырех одинаковых точечных зарядов Q = 10нКл, расположенных в вершинах квадрата со стороной a = 10см?
- 19. Найти потенциальную энергию Π системы трех точечных зарядов $Q_1 = 10$ нКл, $Q_2 = 20$ нКл и $Q_3 = -30$ нКл, расположенных в вершинах равностороннего треугольника со стороной длиной a = 10 см.

- 20. Вычислить потенциальную энергию Π системы двух точечных зарядов $Q_1 = 100$ нКл и $Q_2 = 10$ нКл, находящихся на расстоянии d = 10 см друг от друга.
- 21. Два конденсатора электроемкостями $C_1 = 3$ мкФ и $C_2 = 6$ мкФ соединены между собой и присоединены к батарее с ЭДС E = 120В. Определить заряды Q_1 и Q_2 конденсаторов и разности потенциалов U_1 и U_2 между их обкладками, если конденсаторы соединены: 1) параллельно; 2) последовательно.
- 22. Конденсатор электроемкостью $C_1 = 0,2$ мкФ был заряжен до разности потенциалов $U_1 = 320$ В. После того как его соединили параллельно со вторым конденсатором, заряженным до разности потенциалов $U_2 = 450$ В, напряжение U на нем изменилось до 400В. Вычислить емкость C_2 второго конденсатора.
- 23. Конденсатор электроемкостью $C_1 = 0.6$ мкФ был заряжен до разности потенциалов $U_1 = 300$ В и соединен со вторым конденсатором электроемкостью $C_2 = 0.4$ мкФ, заряженным до разности потенциалов $U_2 = 150$ В. Найти заряд ΔQ , перетекший с пластин первого конденсатора на второй.
- 24. Три одинаковых плоских конденсатора соединены последовательно. Электроемкость C такой батареи конденсаторов равна 89 пФ. Площадь S каждой пластины равна 100 см^2 . Диэлектрик стекло. Какова толщина d стекла? 25. Электрическое поле создано заряженной (Q = 0,1 мкКл) сферой радиусом R = 10 см. Какова энергия W поля, заключенная в объеме, ограниченном сферой и концентрической с ней сферической поверхностью, радиус которой в два раза больше радиуса сферы.
- 26. Между пластинами плоского конденсатора находится плотно прилегающая стеклянная пластинка. Конденсатор заряжен до разности потенциалов $U_1 = 100$ В. Какова будет разность потенциалов U_2 , если вытащить стеклянную пластинку из конденсатора?
- 27. Электроемкость C плоского конденсатора равна 1,5 мкФ. Расстояние d между пластинами равно 5 мм. Какова будет электроемкость C_1 конденсатора, если на нижнюю пластину положить лист эбонита толщиной $d_1 = 3$ мм?
- 28. В плоский конденсатор вдвинули плитку парафина толщиной d=1 см, которая вплотную прилегает к его пластинам. Насколько нужно увеличить расстояние между пластинами, чтобы получить прежнюю емкость?
- 29. Шар радиусом R_1 =8 см заряжен до потенциала ϕ_1 =500 B, а шар радиусом R_2 =4 см до потенциала ϕ_2 =300 B. Определить потенциал ϕ шаров после того, как их соединили металлическим проводником. Емкостью соединительного проводника пренебречь.
- 30. Шар радиусом R_1 =6 см заряжен до потенциала ϕ_1 =300 B, а шар радиусом R_2 =4 см до потенциала ϕ_2 =500 B. Определить потенциал ϕ шаров после того, как их соединили металлическим проводником. Емкостью соединительного проводника пренебречь.
- 31. Вычислить энергию W электростатического поля металлического шара, которому сообщен заряд Q = 100 нКл, если диаметр d шара равен 20 см.
- 32. Пластину из эбонита толщиной d=2 мм и площадью S=300 см² поместили в однородное электрическое поле напряженностью E=1 кВ/м, расположив так, что силовые линии перпендикулярны ее плоской поверхности. Найти: 1)

- плотность σ связанных зарядов на поверхности пластин; 2) энергию W электрического поля, сосредоточенную в пластине.
- 33. Электроемкость C плоского конденсатора равна 111 пФ. Диэлектрик фарфор. Конденсатор зарядили до разности потенциалов U = 600 В и отключили от источника напряжения. Какую работу A нужно совершить, чтобы вынуть диэлектрик из конденсатора? Трение пренебрежимо мало.
- 34. Конденсаторы электроемкостями $C_1 = 1$ мкФ, $C_2 = 2$ мкФ, $C_3 = 3$ мкФ включены в цепь с напряжением U = 1,1 кВ. Определить энергию каждого конденсатора в случаях: 1) последовательного их включения; 2) параллельного включения.
- 35. Конденсатор электроемкостью $C_1 = 666$ пФ зарядили до разности потенциалов U = 1,5 кВ и отключили от источника тока. Затем к конденсатору присоединили параллельно второй, незаряженный конденсатор электроемкостью $C_2 = 444$ пФ. Определить энергию, израсходованную на образование искры, проскочившей при соединении конденсаторов.
- 36. Плоский воздушный конденсатор электроемкостью C = 1,11 нФ заряжен до разности потенциалов $U_1 = 300$ В. После отключения от источника тока расстояние между пластинами конденсатора было увеличено в пять раз. Определить: 1) разность потенциалов U на обкладках конденсатора после их раздвижения; 2) работу A внешних сил по раздвижению пластин.
- 37. Плоский воздушный конденсатор состоит из двух круглых пластин радиусом r=10см каждая. Расстояние d_1 между пластинами равно 1 см. Конденсатор
- зарядили до разности потенциалов U = 1,2 кВ и отключили от источника тока. Какую работу A нужно совершить, чтобы, удаляя пластины друг от друга, увеличить расстояние между ними до $d_2 = 3,5$ см²?
- 38. Сила F притяжения между пластинами плоского воздушного конденсатора равна 50 мН. Площадь S каждой пластины равна 200 см². Найти плотность энергии w поля конденсатора.
- 39. Какое количество теплоты Q выделится при разряде плоского конденсатора, если разность потенциалов между пластинами U=10 кВ, диэлектрик слюда и площадь S каждой пластины равна 100 см²?
- 40. Какое количество теплоты Q выделится при разрядке плоского конденсатора, если разность потенциалов U между пластинами равна 15 кВ, расстояние d=1 мм, диэлектрик слюда и площадь S каждой пластины равна 300 см?
- 41. Точечный диполь с электрическим моментом p=100 пКл·м свободно установился в однородном электрическом поле напряженностью E=9 МВ/м. Диполь повернули на малый угол и предоставили самому себе. Определить частоту ν собственных колебаний диполя в электрическом поле. Момент инерции J диполя относительно оси, проходящей через центр диполя, равен $4\cdot10^{-12}$ кг·м².

- 42. Диполь с электрическим моментом p=100 пКл·м свободно установился в однородном электрическом поле напряженностью E=10 кВ/м. Определить изменение потенциальной энергии $\Delta\Pi$ диполя при повороте его на угол $\alpha=60^\circ$.
- 43 .Диполь с электрическим моментом p = 100 пКл·м свободно устанавливается в однородном электрическом поле напряженностью E = 150 кВ/м. Вычислить работу A, необходимую для того, чтобы повернуть диполь на угол $\alpha = 180^{\circ}$.
- 44.Определить напряженность E и потенциал φ поля, созданного точечным диполем в точках A и B. Его электрический

момент p = 1 пКл·м, а расстояние r от точек A и B до центра диполя равно 10 см.(см.рис).



- 45. Расстояние l между зарядами $Q=\pm 3,2$ нКл диполя равно 12 см. Найти напряженность E и потенциал φ поля, созданного диполем в точке, удаленной на r=8 см как от первого, так и от второго заряда.
- 46. Два точечных диполя с электрическими моментами $p_1 = 1$ пКл·м и $p_2 = 4$ пКл·м находятся на расстоянии r = 2 см друг от друга. Найти силу их взаимодействия, если оси диполей лежат на одной прямой.
- 47. Два точечных диполя с электрическими моментами $p_1 = 20$ пКл·м и $p_2 = 50$ пКл·м находятся на расстоянии r = 10 см друг от друга так, что их оси лежат на одной прямой. Вычислить взаимную потенциальную энергию диполей, соответствующую их устойчивому равновесию.
- 48. Определить напряженность E и потенциал ϕ поля, создаваемого точечным диполем с электрическим моментом p=4 пКл·м на расстоянии r=10 см от центра диполя, в направлении, составляющем угол $\alpha=60^{\circ}$ с вектором электрического момента.
- 49. Определить электроемкость C Земли, принимая ее за шар радиусом R=6400 км.
- 50. Между пластинами плоского конденсатора, заряженного до разности потенциалов U=600 В, находятся два слоя диэлектриков: стекла толщиной $d_1=7$ мм и эбонита толщиной $d_2=3$ мм. Площадь S каждой пластины конденсатора равна 200 см². Найти: 1) электроемкость C конденсатора; 2) электрическую индукцию (смещение) D, напряженность E поля и падение потенциала $\Delta \varphi$ в каждом слое.

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики.— М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010\ \Gamma$.

- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г. **Дополнительная литература**:
- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.

Практическое занятие 8.

Тема 7. Законы постоянного тока. Постоянный электрический ток. Сила тока и плотность тока. Закон Ома. Сопротивление проводников. ЭДС источника. Закон Ома в обобщенной форме. Напряжение. Работа и мощность тока. Закон Джоуля — Ленца. Разветвленные цепи. Правила Кирхгофа. КПД источника тока. Классическая теория проводимости металлов. Законы Ома и Джоуля - Ленца в дифференциальной форме.

Цель занятия: рассмотреть основные законы постоянного тока.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных законов постоянного тока;

умения – применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные законы постоянного тока в их взаимосвязи, формировать навыки применения законов постоянного тока к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того, она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Сила тока	$I = \frac{dq}{dt}$.
Плотность тока	$j = \frac{dI}{dS}$.
Закон Ома:	
в дифференциальной форме	$ec{j} = \gamma ec{E} = rac{ec{E}}{ ho};$
в интегральной форме	$I = \frac{U}{R}$,

da

где γ — удельная проводимость, ρ — удельное сопротивление, U — напряжение на концах цепи, R — сопротивление цепи, j — плотность тока.

Электродвижущая сила

$$\mathscr{E} = \frac{A_{\rm cr}}{Q},$$

где $A_{\rm cr}$ — работа сторонних сил по перемещению заряда на замкнутом участке цепи. Q — величина заряда.

Напряжение

$$U_{12} = \varphi_1 - \varphi_2 + \mathscr{E},$$

где φ_1 и φ_2 – потенциалы двух точек цепи, \mathscr{E} – ЭДС участка, U_{12} – напряжение.

Работа тока

$$dA = IUdt = I^2Rdt = \frac{U^2}{R}dt.$$

Мощность тока

$$P = \frac{dA}{dt} = IU = I^2R = \frac{U^2}{R}$$
,

где I – сила тока, U – напряжение, R – сопротивление.

Правила Кирхгофа

1-е. Алгебраическая сумма токов сходящихся в узле равна нулю: $\sum_{k} I_{k} = 0$.

2-е. Алгебраическая сумма произведений сил токов $I_{\rm i}$ на сопротивление $R_{\rm i}$ соответствующих участков контура равна алгебраической сумме ЭДС $\mathscr{E}_{\rm i}$, встречающихся в контуре: $\sum_i I_i R_{\rm i} = \sum_i \mathscr{E}_{\rm i} \,,$

где i – номер элемента.

Плотность тока j, средняя скорость $\langle \upsilon \rangle$ упорядоченного движения носителей заряда и их концентрация n связаны соотношением $\vec{j} = e \cdot n \cdot \langle \vec{\upsilon} \rangle$, где e – элементарный заряд.

Закон Джоуля – Ленца:

в дифференциальной форме

$$\frac{dw}{dt} = \vec{j}\vec{E} = \gamma E^2 = \frac{E^2}{\rho};$$

в интегральной форме

$$dQ = IUdt = \frac{U^2}{R}dt = I^2Rdt.$$

Сопротивление однородного проводника

$$R = \frac{\rho \cdot l}{S}$$

где l — длина проводника, S — площадь его поперечного сечения.

Удельная электрическая проводимость

$$\gamma = \frac{1}{2}e^2 \cdot n \cdot \langle l \rangle / (mu),$$

где e и m — заряд и масса электрона, n — концентрация электронов, $\langle l \rangle$ - средняя длина их свободного пробега, u — средняя скорость их хаотического движения.

Закон Видемана-Франца

$$\frac{\lambda}{\gamma} = 3\frac{k^2}{e^2}T,$$

где λ — теплопроводность, k — постоянная Больцмана, T — термодинамическая температура.

Зависимость удельного сопротивления от температуры $\rho = \rho_0 (1 + \alpha t)$, где α — температурный коэффициент сопротивления, t — температура по шкале Цельсия.

Термоэлектродвижущая сила, возникающих в термопаре $\mathscr{E} = \alpha (T_1 - T_2)$, где α – удельная термоЭДС, $T_1 - T_2$ – разность температур спаев термопары.

Законы электролиза Фарадея:

Первый закон

$$m = k \cdot Q$$
,

где m — масса выделившегося на электроде вещества при прохождении через электролит электрического заряда Q, k — электрохимический эквивалент вещества;

Второй закон

$$k = \frac{M}{F \cdot Z},$$

где F-постоянная Фарадея (F = 96,5 $\frac{\kappa K}{\text{моль}}$), M - молярная масса вещества, Z- валентность ионов.

Подвижность ионов

$$b = \langle \upsilon \rangle / E$$
,

где E — напряженность электрического поля.

Закон Ома для электролитов

$$\vec{j} = Q \cdot n \cdot (b_{+} + b_{-}) \cdot \vec{E},$$

где Q – заряд иона, n– концентрация b_+ и b_- – подвижности ионов.

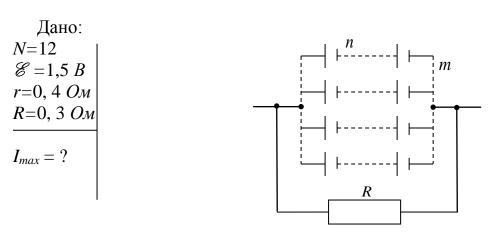
Плотность тока насыщения

$$j_{\text{\tiny Hac}} = Q \cdot n_0 \cdot d ,$$

где n_0 — число пар ионов создаваемых полем в единице объема в единицу времени, d — расстояние между электродами ($n_0 = \frac{N}{V \cdot t}$, где N — число пар ионов, V — объем, t — время).

Примеры решения задач

Задача 1. Даны 12 элементов с ЭДС $\mathscr{E} = 1,5$ В и внутренним сопротивлением r = 0,4Ом. Как нужно соединить эти элементы, чтобы получить от собранной из них батареи наибольшую силу тока во внешней цепи, имеющей сопротивление R = 0,3 Ом? Определить максимальную силу тока I_{max} .



Предположим, что соединение состоит из m параллельно соединенных ветвей по n последовательно соединенных элементов в каждой (см. рис.). Очевидно, $N=m\cdot n$, При последовательном соединении ЭДС и внутреннего сопротивления элементов складываются; поэтому ЭДС каждой ветви $\mathscr{E}_{\rm B}=n\cdot \mathscr{E}$, а внутреннее сопротивление $r_{\rm B}=n\cdot r$.

При параллельном соединении $\mathscr E$ системы равна $\mathscr E$ отдельного элемента и $\frac{1}{r_{\rm c}} = \sum_1^m \frac{1}{r_i}$. Следовательно, ЭДС соединения равна ЭДС отдельной ветви $\mathscr E_{\rm C} = \mathscr E_{\rm B}$,

а внутреннее сопротивление соединения $r_{\rm c} = \frac{r_{\rm B}}{m}$.

Таким образом, для батареи элементов имеем $\mathscr{C}_{\rm C} = n \cdot \mathscr{C}$, и $r_{\rm c} = \frac{nr}{m}$.

По закону Ома для замкнутой цепи получим

$$I = \frac{\mathscr{E}_C}{r_C + R} = \frac{n \cdot \mathscr{E}}{\frac{nr}{m} + R} = \frac{n \cdot m\mathscr{E}}{nr + mR} = \frac{N \cdot \mathscr{E}}{n \cdot r + mR}$$
(1)

Так как $N = m \cdot n$ и $n = \frac{N}{m}$, то окончательно получим

$$I = \frac{N \cdot \mathcal{E}}{\frac{N}{m}r + mR} = \frac{N\mathcal{E} \cdot m}{Nr + m^2 R}$$
 (2)

Исследуем на экстремум функцию I(m), представленную формулой (2).

$$I'(m) = \left(\frac{N\mathscr{E} \cdot m}{Nr + m^2 R}\right)' = \frac{N \cdot \mathscr{E} \cdot \left(Nr + m^2 R\right) - N \cdot \mathscr{E} \cdot m \cdot \left(2mR\right)}{\left(Nr + m^2 R\right)^2}$$

$$\frac{N\mathscr{E}\left(Nr + m^2 R\right) - 2N\mathscr{E} \cdot m^2 R}{\left(Nr + m^2 R\right)^2} = 0,$$

$$(3)$$

$$\frac{N\mathscr{E}\left(Nr + m^2 R\right) - 2N\mathscr{E} \cdot m^2 R}{\left(Nr + m^2 R\right)^2} = 0,$$

найдем максимальное значение т. В результате получим

$$m = \sqrt{\frac{Nr}{R}} = \sqrt{\frac{12 \cdot 0.4}{0.3}} = 4$$
, $M = \frac{N}{m} = \frac{12}{4} = 3$.

Таким образом:

$$I_{\text{max}} = \frac{N\mathscr{E}}{nr + mR} = \frac{12 \cdot 1.5}{3 \cdot 0.4 + 4 \cdot 0.3} = 7.5 \text{ A}.$$

Ответ: соединение состоит из четырех ветвей по 3 последовательно соединенных элементов, максимальный ток 7,5 А.

Задача 2. При силе тока I_1 =3 A во внешней цепи батареи аккумуляторов выделяется мощность P_1 =18 Вт, при силе тока I_2 =1 A — соответственно P_2 =10 Вт. Определить ЭДС $\mathscr E$ и внутреннее сопротивление r батареи. Дано:

Так как мощность
$$P = I \cdot U$$
 , то напряжение в первом случае $P_1 = 18 \text{ Bt}$
 $P_1 = 18 \text{ Bt}$
 $P_2 = 10 \text{ Bt}$

Из закона Ома для замкнутой цепи - $I = \frac{\mathscr{C}}{R+r}$.

Из приведенных выше равенств следует

 $\mathbb{Z} = ?$
 $\mathbb{Z} = ?$
 $\mathbb{Z} = ?$
 $\mathbb{Z} = P_2$
 $\mathbb{$

Задача 3. По железному проводнику, диаметром d = 0.6 мм, течет ток 16 А. Определить среднюю скорость $\langle \upsilon \rangle$ направленного движения электронов, считая, что концентрация n свободных электронов равна концентрации n' атомов проводника.

Дано:
$$d = 0, 6 \text{ мм} = 6 \cdot 10^{-4} \text{м}$$
 $I = 16 \text{ A}$ $n = n'$ $\langle \upsilon \rangle = ?$



Средняя скорость упорядоченного движения электронов

$$\langle \upsilon \rangle = \frac{l}{t} \tag{1}$$

где t — время, в течение которого все свободные электроны, находящиеся между сечениями 1 и 2, пройдя сечение 2 (см. рис.), перенесут заряд $Q = e \cdot N$, создавая ток силой

$$I = \frac{Q}{t} = \frac{eN}{t} \tag{2}$$

где e — элементарный заряд, N — число электронов проводника, l — его длина. Очевидно число электронов $N = n \cdot V = n \cdot l \cdot S$

где V- объем, а S – площадь сечения проводника. По условию, n=n', следовательно

$$n = n' = \frac{N_A}{V_m} = \frac{N_A}{M/\rho} = \frac{N_A \cdot \rho}{M} ,$$
 (4)

где N_A – число Авогадро, ρ – плотность железа $\left(\rho = 7,87 \cdot 10^3 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$,

M — молярная масса железа $\left(M = 56 \cdot 10^{-3} \frac{\mathrm{K}\Gamma}{\mathrm{моль}} \right)$.

Подставляя (4) в (3), а затем в (2), окончательно получим

$$I = \frac{N_A \cdot \rho \cdot l \cdot S \cdot e}{M \cdot t},$$
$$l = \frac{IMt}{N_A \rho Se}.$$

откуда

Подставим полученное выражение в (1), считая, что $S = \frac{\pi d^2}{4}$, После преобразования найдем, что

$$\left\langle \upsilon \right\rangle = \frac{4IM}{\pi d^2 N_{\rm A} \cdot \rho \cdot e} = \frac{4 \cdot 16 \cdot 56 \cdot 10^{-3}}{3,14 \cdot \left(6 \cdot 10^{-4}\right)^2 \cdot 6,0 \cdot 10^{23} \cdot 7,87 \cdot 10^3 \cdot 1,6 \cdot 10^{-19}} = 4,2 \cdot 10^{-3} \, \text{m/c} = 4,2 \, \text{mm/c}$$

Вопросы и задания:

Вопросы для самоконтроля:

- 1. Постоянный электрический ток и его характеристики. Закон Ома для участка цепи.
- 2. Сторонние силы. Электродвижущая сила (ЭДС). Закон Ома для замкнутой цепи.
 - 3. Работа и мощность тока. Закон Джоуля Ленца.
 - 4. Обобщенный закон Ома. Правила Кирхгофа.
 - 5. Электрический ток в металлах.
 - 6. Классическая теория электропроводности. Термоэлектронная эмиссия.
 - 7. Ток в газах.
 - 8. Ток в жидкостях.

Задания:

- 1. Три батареи с ЭДС \mathcal{E}_1 = 12 В, \mathcal{E}_2 = 5 В и \mathcal{E}_3 = 10 В и одинаковыми внутренними сопротивлениями r, равными 1 Ом, соединены между собой одноименными полюсами. Сопротивление соединительных проводов ничтожно мало. Определить силы токов I, идущих через каждую батарею.
- 2. Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС $\mathscr E$ каждого элемента равна 1,2 В, внутреннее сопротивление r=0,2 Ом. Полученная батарея замкнута на внешнее сопротивление R=1,5 Ом. Найти силу тока I во внешней цепи.
- 3. Внутреннее сопротивление r батареи аккумуляторов равно 3 Ом. Сколько процентов от точного значения ЭДС составляет погрешность, если, измеряя разность потенциалов на зажимах батареи вольтметром с сопротивлением $R_{\rm B} = 200$ Ом, принять ее равной ЭДС?
- 4. Зашунтированный амперметр измеряет токи силой до I=10 А. Какую наибольшую силу тока может измерить этот амперметр без шунта, если сопротивление $R_{\rm a}$ амперметра равно 0,02 Ом и сопротивление $R_{\rm m}$ шунта равно 5 мОм?
- 5. Сила тока в проводнике равномерно нарастает от $I_0 = 0$ до I = 3 А в течение времени t = 10 с. Определить заряд Q, прошедший в проводнике.
- 6. Даны 12 элементов с ЭДС \mathscr{E} = 1,5 В и внутренним сопротивлением r = 0,4 Ом. Как нужно соединить эти элементы, чтобы получить от собранной из них батареи наибольшую силу тока во внешней цепи, имеющей сопротивление R = 0,3 Ом? Определить максимальную силу тока I_{max} .
- 7. Два элемента (\mathcal{E}_1 =1,2B, r_1 =0,1Ом; \mathcal{E}_2 =0,9B, r_2 =0,3Ом) соединены одноименными полюсами. Сопротивление R соединительных проводов равно 0,2 Ом. Определить силу тока I в цепи.
- 8. Определить силу тока короткого замыкания источника тока, если при внешнем сопротивлении R_1 =50 Ом сила тока в цепи I_1 =0,2 A, а при R_2 =110 Ом сила тока в цепи I_2 =0,1 A.

- 9. Катушка и амперметр соединены последовательно и подключены к источнику тока. К зажимам катушки присоединен вольтметр сопротивлением $R_{\rm B}$ =1 кОм. Показания амперметра I=0.5 A, вольтметра U=100 B. сопротивление R катушки. Сколько процентов otточного значения сопротивления катушки составит погрешность, если не учитывать сопротивления вольтметра?
- 10. К источнику тока с ЭДС \mathscr{E} =1,5 В присоединили катушку с сопротивлением R=0,1Ом. Амперметр показал силу тока, равную I_1 =0,5 А. Когда к источнику тока присоединили последовательно еще один источник тока с такой же ЭДС, то сила тока I в той же катушке оказалась равной 0,4 А. Определить внутренние сопротивления r_1 и r_2 первого и второго источников тока.
- 11. По проводнику сопротивлением R=3 Ом течет ток, сила которого возрастает. Количество теплоты Q, выделившееся в проводнике за время $\tau=8$ с, равно 200 Дж. Определить количество электричества q,протекшее за это время по проводнику. В начальный момент времени сила тока в проводнике равна нулю.
- 12. Сила тока в проводнике сопротивлением R = 12 Ом равномерно убывает от $I_0 = 5$ А до I = 0 в течение времени t = 10 с. Какое количество теплоты Q выделяется в этом проводнике за указанный промежуток времени?
- 13. Сила тока в проводнике сопротивлением r = 100 Ом равномерно нарастает от $I_0 = 0$ до $I_{\text{max}} = 10$ А в течение времени $\tau = 30$ с. Определить количество теплоты Q, выделившееся за это время в проводнике.
- 14. При силе тока $I_1 = 3$ A во внешней цепи батареи аккумуляторов выделятся мощность $P_1 = 18$ Вт, при силе тока $I_2 = 1$ А соответственно $P_2 = 10$ Вт. Определить ЭДС \mathscr{E} и внутреннее сопротивление r батареи.
- 15. Обмотка электрического кипятильника имеет две секции. Если включена только первая секция, то вода закипает через $t_1 = 15$ мин, если только вторая, то через $t_2 = 30$ мин. Через сколько минут закипит вода, если обе секции включить последовательно? Параллельно?
- 16. К зажимам батареи аккумуляторов присоединен нагреватель. ЭДС \mathcal{E} батареи равна 24 В, внутреннее сопротивление r=1 Ом. Нагреватель, включенный в цепь, потребляет мощность P=80 Вт. Вычислить силу тока I в цепи и КПД η нагревателя.
- 17. ЭДС \mathscr{E} батареи равна 20 В. Сопротивление R внешней цепи равно 2 Ом, сила тока I=4А. Найти КПД батареи. При каком значении внешнего сопротивления R_1 КПД будет равен 99%?
- 18. К батарее аккумуляторов, ЭДС \mathscr{E} которой равна 2 В и внутреннее сопротивление r равно 0,5 Ом, присоединен проводник. Определить: 1) сопротивление R проводника, при котором мощность, выделяемая в нем, максимальна; 2) мощность P, которая при этом выделяется в проводнике.
- 19. ЭДС батареи аккумуляторов $\mathcal{E} = 12$ В, сила тока I короткого замыкания равна 5 А. Какую наибольшую мощность P_{max} можно получить во внешней цепи, соединенной с такой батареей?

- 20. Лампочка и реостат, соединенные последовательно, присоединены к источнику тока. Напряжение U на зажимах лампочки равно 40 B, сопротивление R реостата равно 10 Ом. Внешняя цепь потребляет мощность P=120 Вт. Найти силу тока в цепи.
- 21. В медном проводнике длиной l=2 м и площадью S поперечного сечения, равной 0,4 мм², идет ток. При этом ежесекундно выделяется количество теплоты Q=0,35 Дж. Сколько электронов N проходит за 1 секунду через поперечное сечение этого проводника?
- 22. Плотность тока j в медном проводнике равна 3 $A/мм^2$. Найти напряженность E электрического поля в проводнике.
- 23. Плотность тока j в алюминиевом проводе равна 1 А/мм². Найти среднюю скорость $\langle v \rangle$ упорядоченного движения электронов, предполагая, что число свободных электронов, предполагая, что число свободных электронов в 1 см³ алюминия равно число атомов.
- 24. Определить среднюю скорость < v > упорядоченного движения электронов в медном проводнике при силе тока I = 10 А и сечении S проводника, равном 1 мм². Принять, что каждый атом меди приходится два электрона проводимости.
- 25. Сила тока *I* в металлическом проводнике равна 0,8 A, сечение проводника S=4 мм². Принимая, что в каждом кубическом сантиметре металла содержится $n=22,5\cdot10^{22}$ свободных электронов, определить среднюю скорость < v> их упорядоченного движения.
- 26. В медном проводнике объемом V=6 см³ при прохождении по нему постоянного тока за время t=1 мин выделилось количество теплоты Q=216 Дж. Вычислить напряженность E электрического поля в проводнике.
- 27. Металлический проводник движется с ускорением a=100 м/с². Используя классическую теорию электропроводности металлов, определить напряженность E электрического поля в проводнике.
- 28. Медный диск радиусом R=0,5 м равномерно вращается (ω =10⁴ рад/с) относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить разность потенциалов U между центром диска и его крайними точками.
- 29. Металлический стержень движется вдоль своей оси со скоростью v=200 м/с. Определить заряд Q, который протечет через гальванометр, подключаемый к концам стержня, при резком его торможении, если длина l стержня равна 10 м, а сопротивление R всей цепи (включая цепь гальванометра) равно 10 мОм.
- 30. Удельная проводимость γ металла равна 10 МСм/м. Вычислить среднюю длину < l > свободного пробега электронов в металле, если концентрация n свободных электронов равна 10^{28} м⁻³. Среднюю скорость u хаотического движения электронов принять равной 10^6 м/с.

Рекомендуемая литература:

Основная литература:

1. Трофимова Т.И. Курс физики.— М.: Высшая школа, 2012 г.

- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010\ \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Практическое занятие 9

Тема 9. Классическая теория проводимости металлов *Цель занятия.* Изучить проводники в электрическом поле.

Знания и умения, приобретаемые студентом в результате освоения **темы, формируемые компетенции.** Диэлектрики. Электрическое поле в Поляризация диэлектриков. Поляризационные диэлектриках. заряды. Диэлектрическая проницаемость среды. Диэлектрики с особыми свойствами: пьезоэлектрики и сегнетоэлектрики. Объемная плотность энергии. Полярные и диэлектрики. Векторы поляризации И электростатической Поляризованность. (смещения). Условия на границе индукции диэлектриков. Проводники. Проводники в электростатическом поле. Поле внутри проводника и у его поверхности. Распределение заряда в проводнике. Электроемкость уединенного проводника. Емкость системы проводников. Конденсаторы. Потенциальная энергия системы зарядов. Энергия электростатического Плотность энергии. способностью поля. Владеет применять соответствующий физико-математический аппарат при решении профессиональных задач.

Актуальность темы. Основные законы электростатики применяются при решении многих инженерных задач.

Теоретическая часть.

Диэлектрики. Электрическое поле в диэлектриках. Поляризация диэлектриков. Поляризационные заряды.

Вектор поляризации (поляризованность) — это дипольный момент единицы объема, он определяется соотношением $\vec{P}=\chi\varepsilon_0\vec{E}$, где χ – диэлектрическая восприимчивость. Вектор электрической индукции (или вектор электрического смещения определяется выражением $\vec{D}=\varepsilon_0\vec{E}+\vec{P}$.

Поляризуемость. Диэлектрическая проницаемость зависит от поляризумости молекул вещества, $\vec{p} = \beta \varepsilon_0 \vec{E}$. Тензор поляризуемости. В общем случае дипольный момент молекулы не совпадает по направлению с внешним магнитным полем, поэтому $p_i = \beta_{ij} \varepsilon_0 E_j$.

Плоский конденсатор, заполненный однородным диэлектриком. В этой системе связанные заряды будут только на поверхности, и существует связь $\left| \vec{P} \right| = \sigma$, где σ – поверхностная плотность связанных зарядов.

Теорема Гаусса для диэлектриков

Для диэлектриков выполняются следующие соотношения:

$$\oint \vec{P} d\vec{S} = -q', \ div\vec{P} = -\rho';$$

$$\oint \vec{D} d\vec{S} = Q, \quad div\vec{D} = \rho.$$

Поле точечного заряда в диэлектрике Закон Кулона для бесконечного однородного диэлектрика имеет вид

$$\vec{F} = \frac{q_1 q_2}{4\pi \varepsilon \varepsilon_0 r^3} \vec{r}.$$

Условия на границе раздела двух диэлектриков во внешнем электрическом поле.

На границе раздела диэлектриков выполняется равенство тангенциальных составляющих вектора \vec{E} : $\vec{E}_{1t} = \vec{E}_{2t}$ и равенство нормальных составляющих вектора \vec{D} : $\vec{D}_{1n} = \vec{D}_{2n}$. Уравнение Пуассона для однородных диэлектриков имеет вид

$$\vec{\nabla} \left(\varepsilon \vec{\nabla} \varphi \right) = -\frac{\rho}{\varepsilon_0}.$$

Энергия системы электрических зарядов в диэлектрике. Энергия поля в диэлектриках. Плотность энергии электрического поля в диэлектриках определяется выражением $w = \frac{\vec{D}\vec{E}}{2}$.

Электрический ток в проводниках

Плотность тока, плотность тока и ток связаны соотношением $\int \vec{j} d\vec{S} = I$. Уравнение неразрывности (закон сохранения заряда)

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \vec{j} = 0.$$

Закон Ома для плотности тока. Удельная проводимость, удельное сопротивление

Между плотностью тока и напряженностью электрического поля существует линейная связь, $\vec{j} = \sigma \vec{E}$ (закон Ома в дифференциальной форме). Закон Ома для однородного проводника записывается в виде $I = \frac{U}{R}$. Закон Джоуля – Ленца задает количество тепла, которое выделяется в проводнике при протекании тока в единицу времени:

$$\frac{dQ}{dt} = \frac{U^2}{R}$$
.

Правильное описание движения зарядов в проводниках дает только квантовая теория. Примитивная электронная теория протекания тока через металл основывается на движении зарядов как классических частиц, на которые действует сила со стороны электрического поля и сила трения со стороны среды.

Примеры решения задач

Задача 1. Диполь с электрическим моментом P=50 пКл·м свободно устанавливается в однородном электрическом поле напряженностью E = 30 $\frac{\kappa B}{M}$.

Найти работу, необходимую для поворота диполя на угол α =30°.

Дано:

A = ?

P=50πКл·м=5·10⁻¹¹ Кл·м $d\alpha$

$$E = 30 \frac{\text{kB}}{\text{M}} = 3 \cdot 10^4 \frac{\text{B}}{\text{M}}$$

$$\alpha = 30^{\circ}$$

Элементарная работа при повороте диполя на угол

$$dA = M \cdot d\alpha$$
,

где $M=P\cdot E\cdot \sin\alpha$ - механический момент сил, действующий на диполь. α - угол между векторами \vec{E} и \vec{P} . Таким образом $dA=P\cdot E\cdot \sin\alpha\cdot d\alpha$.

При свободном положении диполь в электрическом поле $\alpha = 0$, значит полная работа может быть рассчитана по формуле

$$A = \int_{0}^{\alpha} P \cdot E \sin \alpha \cdot d\alpha = -PE \cdot \cos \alpha \Big|_{0}^{\alpha}.$$

$$A = -5 \cdot 10^{-11} \cdot 3 \cdot 10^{4} \Big(\cos 30^{\circ} - \cos 0^{\circ}\Big) = 2 \cdot 10^{-7} \text{ Дж=0,2 мкДж.}$$

Вопросы и задания.

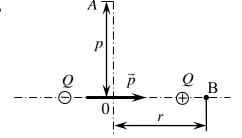
- 1. Диэлектрики в электростатическом поле.
- 2. Поляризация диэлектриков, вектор поляризации.
- 3. Связь вектора поляризации с объемной и поверхностной плотностью связанных зарядов.
- 4. Теорема Гаусса для диэлектриков.
- 5. Поле точечного заряда в диэлектрике.

Задачи для самостоятельного решения

1. Точечный диполь с электрическим моментом p=100 пКл·м свободно установился в однородном электрическом поле напряженностью E=9 МВ/м. Диполь повернули на малый угол и предоставили самому себе. Определить частоту ν собственных колебаний диполя в электрическом поле. Момент инерции J диполя относительно оси, проходящей через центр диполя, равен $4\cdot10^{-12}$ кг·м².

- 2. Диполь с электрическим моментом p=100 пКл·м свободно установился в однородном электрическом поле напряженностью E=10 кВ/м. Определить изменение потенциальной энергии $\Delta\Pi$ диполя при повороте его на угол $\alpha=60^\circ$.
- 3 .Диполь с электрическим моментом p = 100 пКл·м свободно устанавливается в однородном электрическом поле напряженностью E = 150 кВ/м. Вычислить работу A, необходимую для того, чтобы повернуть диполь на угол $\alpha = 180^\circ$.
- 4.Определить напряженность E и потенциал φ поля, созданного точечным диполем в точках A и B. Его электрический

момент p = 1 пКл·м, а расстояние r от точек A и B до центра диполя равно 10 см.(см.рисунок).



- 5. Расстояние l между зарядами $Q=\pm 3,2$ нКл диполя равно 12 см. Найти напряженность E и потенциал φ поля, созданного диполем в точке, удаленной на r=8 см как от первого, так и от второго заряда.
- 6. Два точечных диполя с электрическими моментами $p_1 = 1$ пКл·м и $p_2 = 4$ пКл·м находятся на расстоянии r = 2 см друг от друга. Найти силу их взаимодействия, если оси диполей лежат на одной прямой.
- 7. Два точечных диполя с электрическими моментами $p_1 = 20$ пКл·м и $p_2 = 50$ пКл·м находятся на расстоянии r = 10 см друг от друга так, что их оси лежат на одной прямой. Вычислить взаимную потенциальную энергию диполей, соответствующую их устойчивому равновесию.
- 8. Определить напряженность E и потенциал ϕ поля, создаваемого точечным диполем с электрическим моментом p=4 пКл·м на расстоянии r=10 см от центра диполя, в направлении, составляющем угол $\alpha=60^{\circ}$ с вектором электрического момента.

<u>Раздел 4. Магнетизм. Электромагнитные колебания и волны.</u> Практическое занятие 10 - 12

Тема 10-12. Магнитное поле и его характеристики. Явление электромагнитной индукции. Переменный электрический ток. Понятие о магнитном поле. Характеристики магнитного поля. Явление электромагнитной индукции. Самоиндукция. Индуктивность проводников. Энергия магнитного поля.

Цель занятия: рассмотреть основные проявления магнитного поля постоянного тока.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных характеристик магнитного поля постоянного тока, явления электромагнитной индукции и законов переменного тока;

умения – применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так позволяет изучать основные характеристики магнитного поля постоянного тока, явление электромагнитной индукции и законы переменного тока в их взаимосвязи, формировать навыки применения основных характеристик магнитного поля постоянного тока, явления электромагнитной индукции и законов переменного тока к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того, она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Сила Лоренца $ec{F} = q ec{ec{
u}} imes ec{B},$

где $\vec{\upsilon}$ – скорость заряда q, B – индукция магнитного поля.

Сила Ампера $d\vec{F} = Id\vec{l} \times \vec{B},$

где I – сила тока в проводнике, dl – элемент длины проводника.

Магнитный момент контура с током

 $\vec{p}_{\rm m} = I\vec{S}$,

где \vec{S} — площадь контура.

Механический момент, действующий на контур с током в магнитном поле

 $\vec{M} = \vec{p}_{\rm m} \times \vec{B}$

Закон Био-Савара-Лапласа

 $d\vec{B} = \frac{\mu_0 \mu I d\vec{l} \times \vec{r}}{4\pi r^3},$

где μ_0 — магнитная постоянная, μ — магнитная проницаемость среды, $d\vec{B}$ — вектор магнитной индукции.

Магнитная индукция:

$$B = \frac{\mu_0 \mu I}{2R},$$

поля бесконечно длинного прямого тока

$$B = \frac{\mu_0 \mu I}{2\pi r};$$

поля, созданного отрезком проводника с током $B = \frac{\mu_0 \mu I}{\Lambda \pi r} (\cos \alpha_1 + \cos \alpha_2),$

$$B = \mu_0 \mu nI$$
,

поля бесконечно длинного соленоида

где R – радиус кругового тока, r – кратчайшее расстояние до оси проводника, α_1 и α_2 – углы между отрезком проводника и линией, соединяющей концы отрезка проводника с точкой поля, n — число витков на единицу длинны соленоида.

Сила взаимодействия двух прямолинейных бесконечно длинных

параллельных токов на единицу их длины

$$F=\frac{\mu_0\mu I_1I_2}{2\pi r},$$

где r – расстояние между токами I_1 и I_2 .

Работа по перемещению контура с током в магнитном поле $A = I\Delta \Phi$,

где Φ – магнитный поток через поверхность контура.

Магнитный поток однородного

магнитного поля через площадку S

 $\Phi = BS\cos\alpha$,

где α — угол между вектором B и нормально к площадке.

Закон электромагнитной индукции

$$\mathscr{E}_{i} = -N \frac{d\Phi}{dt} = -\frac{d\psi}{dt},$$

где N — число витков контура.

Потокосцепление контура с током

 $\psi = LI$,

где L – индуктивность контура.

Электродвижущая сила самоиндукции

$$\mathscr{E}_{S} = -L\frac{dI}{dt}.$$

Индуктивность соленоида

$$L = \mu_0 \mu n^2 V,$$

где V – объем соленоида n – число витков на единицу длины соленоида Мгновенное значение силы тока в цепи,

обладающей сопротивлением R

и индуктивностью
$$L$$

$$I = I_0 \exp\left(-\frac{Rt}{L}\right) + \frac{\mathcal{E}}{R} \left[1 - \exp\left(-\frac{Rt}{L}\right)\right].$$

Энергия магнитного поля

$$W_{\rm M} = \frac{LI^2}{2}.$$

Объемная плотность энергии магнитного поля

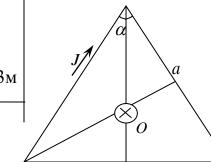
$$W_{\rm M} = \frac{BH}{2} = \frac{B^2}{2\mu_0\mu} = \frac{\mu_0\mu H^2}{2}.$$

Примеры решения задач

Задача 1. По тонкому проводу, изогнутому в виде равностороннего треугольника, течет ток силой I =40A. Длина стороны треугольника a =30 см. Определить индукцию \vec{B} в точке пересечения высот треугольника.

Дано: *I*=40 A *a*=30 см=0,3м

B=?



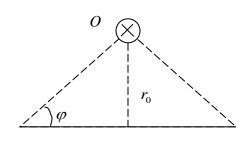
Магнитную индукцию в точке O найдем, используя принцип суперпозиции для магнитных полей: $\vec{B} = \sum \vec{B_i}$. В нашем случае весь контур можно разбить на 3 одинаковых части, индукция каждой из которых $\vec{B_1}$ в точке O имеет

одинаковые величину и направление

Рис. 1.

- вертикально вниз (определяемое по

правилу правого винта). Поэтому индукция в точке O будет равной $B{=}3B_1$ и



направленной вниз перпендикулярно рис 1. Магнитную индукцию стороны треугольника B_1 найдем используя формулу для индукции, отрезка проводника при симметричном расположении его концов относительно точки O (рис.2). Треугольник токов равносторонний и его высоты являются также и медианами и

Рис. 2.

биссектрисами. Таким образом, имеем

$$B_1 = \frac{\mu_0 I}{2\pi r_0} \cos \varphi$$
 и, $\varphi = \frac{\alpha}{2} = 30^\circ$,

$$r_0 = \frac{a}{2} \cdot tg\varphi = \frac{a}{2} \cdot \frac{1}{\sqrt{3}}$$

Следовательно,

$$B_1 = \frac{\mu_0 I}{2\pi \frac{a}{2\sqrt{3}}} \cdot \frac{\sqrt{3}}{2} = \frac{3\mu_0 I}{2\pi a}$$
 и $B = 3B_1 = \frac{9\mu_0 I}{2\pi a} = 240$ мкТл.

Задача 2. Электрон движется в однородном магнитном поле с индукцией B = 0.03 Тл по окружности радиусом r=10 см. Определить скорость электрона.

Дано: *B*=0,03 Тл

В магнитном поле на движущийся электрон действуют сила

$$r=10 \text{ см} = 0,1\text{м}$$

 $e = 1,6 \cdot 10^{-19} \text{ Кл}$
 $m = 9,1 \cdot 10^{-31} \text{ кг}$
 $v = ?$

Лоренца. Величина этой силы равна

$$F = e \cdot \upsilon \cdot B \cdot \sin \alpha$$
.

Так как траектория электрона — окружность, то сила Лоренца является центростремительной силой, и угол $\alpha = \pi/2$. Следовательно,

$$F = \frac{mv^2}{r} = evB.$$

$$v = \frac{eBr}{m}.$$
(1)

Откуда имеем

Подставив численные значения, получим

$$\upsilon = \frac{eBr}{m} = \frac{1.6 \cdot 10^{-19} \cdot 3 \cdot 10^{-2} \cdot 10^{-2}}{9 \cdot 10^{-31}} = \frac{1.6}{3} \cdot 10^{8} \text{ m/c} \approx 0.533 \cdot 10^{8} \text{ m/c}.$$

То есть скорость υ сравнима со скоростью света $c=3\cdot 10^8$ м/с. Это означает, что при расчетах необходимо использовать элементы специальной теории относительности (СТО). Формулы классической механики применимы в СТО,

если считать, что масса тела зависит от его скорости по закону, $m = \frac{m_0}{\sqrt{1-\beta^2}}$, где

 m_0 - масса покоя тела и $\beta = v/c$. Подставим эти выражения в (1). После несложных преобразований получим релятивистское выражение для скорости

электрона
$$\upsilon_p = \frac{\upsilon}{\sqrt{1+\beta^2}}$$
.

Таким образом, релятивистское значение скорости равно $v_p = 0,525 \cdot 10^8 \text{ м/c}.$

Задача 3. В магнитном поле с индукцией 0,1 Тл вращается рамка, содержащая 1000 витков площадью 150 см² каждый. Максимальное ЭДС, индуцируемое в рамке равно 94 В. Определить частоту вращения рамки.

Дано:
$$B=0,1$$
 Тл По закону Фарадея для электромагнитной индукции имеем $N=1000=10^3$ $\mathcal{E}_{\rm i}=-\frac{d\psi}{dt}$, (1) $S=150{\rm cm}^2=1,5\cdot 10^{-2}{\rm m}^2$ где ψ — потокосцепление. $\psi=N\cdot\Phi$, где $\Phi=BS\cos\alpha$ — магнитный поток. В условиях данной задачи $\alpha=2\pi\cdot n\cdot t$, где n -частота вращения рамки. Таким образом, закон Фарадея (1),

после процедуры дифференцирования имеет вид

$$\mathscr{E}_{i} = NBS \, 2\pi n \cdot \sin(2\pi n \cdot t).$$

Из полученного выражения следует, что максимальное значение ЭДС

 $\mathscr{E}^{\text{мах}} = NBS \cdot 2\pi n$, возникает когда угол $\alpha = \pi/2$. Отсюда имеем

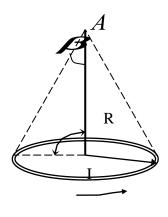
$$n = \frac{\mathcal{E}_{i}^{\text{Max}}}{NBS \cdot 2\pi} = \frac{94}{10^{3} \cdot 0.1 \cdot 1.5 \cdot 10^{-2} \cdot 2 \cdot 3.14} = 10 \text{ c}^{-1}.$$

Вопросы и задания:

Вопросы:

- 1. Магнитное поле и его основные характеристики.
- 2. Закон Био Савара Лапласа и его применение.
- 3. Закон Ампера.- Взаимодействие параллельных токов.
- 4. Магнитное поле движущегося заряда. Сила Лоренца.
- 5. Движение заряженных частиц в магнитном поле.
- 6. Теорема о циркуляции вектора \vec{B} . Магнитные поля соленоида и тороида.
- 7. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.
 - 8. Работа по перемещению проводника в магнитном поле.
 - 9. Электромагнитная индукция. Закон Фарадея.
 - 10. Правило Ленца. Вращение рамки в магнитном поле. Вихревые токи.
 - 11. Индуктивность контура. Самоиндукция.
 - 12. Токи при размыкании и замыкании цепи.
 - 13. Взаимная индукция.
 - 14. Трансформаторы. Энергия магнитного поля.
 - 15. Магнитные свойства вещества. Диа- и парамагнетики.
 - 16. Магнитное поле в веществе.
 - 17. Закон полного тока.
 - 18. Ферромагнетики и их свойства.
 - 19. Переменный ток, его промышленное получение.
 - 20. Переменный ток в цепи с индуктивностью, емкостью и активным сопротивлением, векторная диаграмма напряжений и токов.

Задачи для самостоятельного решения



- 1. Расстояние d между двумя длинными параллельными проводами равно 5 см. По проводам в одном направлении текут одинаковые токи силой I=30 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии $r_1=4$ см от одного и $r_2=3$ см от другого провода.
- 2. Два длинных параллельных провода находятся на расстоянии r=5 см один от другого. По проводам текут в противоположных направлениях одинаковые токи силой I=

10 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии $r_1 = 2$ см от одного и $r_2 = 3$ см от другого провода.

- 3. По тонкому проводящему кольцу радиусом R=10 см течет ток силой I=80 А. Найти магнитную индукцию B в точке, равноудаленной от всех точек кольца на r=20 см.
- 4. По проводнику в виде тонкого кольца радиусом R=10 см течет ток. Чему равна сила I этого тока, если магнитная индукция B поля в точке A (рис.) равна 1 мкТл? Угол $\beta=10^\circ$
- 5. По тонкому проводящему кольцу радиусом R = 15 см течет ток силой I = 60 А. Найти магнитную индукцию B в точке, равноудаленной от центра кольца на r = 20 см.
- 6. По двум бесконечно длинным прямым параллельным проводам текут токи силой $I_1 = 20$ А и $I_2 = 30$ А в противоположных направлениях. Расстояние d между проводами равно 20 см. Вычислить магнитную индукцию B в точке, удаленной на $r_1 = 25$ см от первого и на $r_2 = 40$ см от второго провода.
- 7. По двум бесконечно длинным параллельным проводам текут токи силой $I_1 = 20 \text{ A}$ и $I_2 = 30 \text{ A}$ в одном направлении. Расстояние d между проводами равно 10 см. Вычислить магнитную индукцию B в точке, удаленной от обоих проводов на одинаковое расстояние r = 10см.
- 8. По контуру в виде равностороннего треугольника идет ток силой $I=40~{\rm A.}$ Длина a стороны треугольника равна 30 см. Определить магнитную индукцию B в точке пересечения высот.
- 9. По контуру в виде квадрата идет ток силой I=50 А. Длина a стороны квадрата равна 20 см. Определить магнитную индукцию B в точке пересечения диагоналей.
- 10. По тонкому проводу, изогнутому в виде прямоугольника, течет ток силой $I = 60\,$ А. Длины сторон прямоугольника равны $a=30\,$ см и $b=40\,$ см. Определить магнитную индукцию B в точке пересечения диагоналей.
- 11. По двум одинаковым квадратным контурам со стороной a=20 см текут токи силой I = 10 A в каждом. Определить силу F взаимодействия контуров, если расстояние d между соответственными сторонами контуров равно 2 мм.
- 12. По двум тонким проводам, изогнутым в виде кольца радиусом R=10см, текут одинаковые токи силой I=10 А в каждом. Найти силу F взаимодействия этих колец, если плоскости, в которых лежат кольца, параллельны, а расстояние d между центрами колец равно 1 мм.
- 13. По трем прямым параллельным проводам, находящимся на одинаковом расстоянии a=10см друг от друга, текут одинаковые токи силой I=100 А. В двух проводах направления токов совпадают. Вычислить силу F, действующую на отрезок длиной l=1 м каждого провода.
- 14. По двум параллельным проводам длиной l=1 м каждый текут токи одинаковой силы. Расстояние d между проводами равно 1 см. Токи взаимодействуют с силой F=1 мН. Найти силу тока I в проводах.
- 15 По двум параллельным прямым проводам длиной 1 = 2,5 м каждый, находящимся на расстоянии d = 20 см друг от друга, текут одинаковые токи силой I = 1 кА. Вычислить силу взаимодействия токов.

- 16. Электрон движется в однородном магнитном поле с индукцией B = 9 мТл по винтовой линии, радиус R которой равен 1 см и шаг h = 7,8 см. Определить период T вращения электрона и его скорость v.
- 17. Заряженная частица с энергией T = 1 кэВ движется в однородном магнитном поле по окружности радиусом R = 1 мм. Найти силу F, действующую на частицу со стороны поля.
- 18. Протон, прошедший ускоряющую разность потенциалов U = 600 В, влетел в однородное магнитное поле с индукцией B = 0,3 Тл и начал двигаться по окружности. Вычислить ее радиус R.
- 19. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи силой I=1 кА. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
- 20. Прямой провод длинной l=10 см, по которому течет ток силой I=20А, находится в однородном магнитном поле с индукцией B=0,01Тл. Найти угол α между направлениями вектора B и тока, если на провод действует сила F=10 мН.
- 21. В однородном магнитном поле с индукцией B=0.01 Тл находится прямой провод длиной l=8 см, расположенный перпендикулярно линиям индукции. По проводу течет ток силой I=2 А. Под действием сил поля провод переместился на расстояние s=5 см. Найти работу A сил поля.
- 22. Соленоид индуктивностью L = 4 мГн содержит N = 600 витков. Определить магнитный поток Φ , если сила тока I, протекающего по обмотке, равна 12 А.
- 23. С помощью реостата равномерно увеличивают силу тока в катушке на ΔI =0,1 A в 1 с. Индуктивность L катушки равна 0,01 Гн. Найти среднее значение ЭДС самоиндукции $< \mathcal{E}_i >$.
- 24. Тонкий медный провод массой m=1 г согнут в виде квадрата, и концы его замкнуты. Квадрат помещен в однородное магнитное поле (B=0,1 Тл) так, что плоскость его перпендикулярна линиям индукции поля. Определить количество электричества Q, которое протечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию.
- 25. Проволочное кольцо радиусом r = 10 см лежит на столе. Какое количество электричества Q протечет по кольцу, если его повернуть с одной стороны на другую? Сопротивление R кольца равно 1 Ом. Вертикальная сопротивляющая индукции B магнитного поля Земли равна 50 мкТл.
- 26. Магнитная индукция B поля между полюсами двухполюсного генератора равна 0,8 Тл. Ротор имеет N=100 витков площадью S=400 см².Определить частоту n вращения якоря, если максимальное значение ЭДС индукции $\mathcal{E}_{\max}=200$ В.
- 27. В однородном магнитном поле с индукцией B = 0.35 Тл равномерно с частотой n=480 мин⁻¹ вращается рамка, содержащая N = 1500 витков площадью S=50 см². Ось вращения лежит в плоскости рамки и перпендикулярна линиям

индукции. Определить максимальную ЭДС индукции \mathcal{E}_{max} , возникающую в рамке.

- 28. Рамка площадью S=200 см² равномерно вращается с частотой n=10 с⁻¹ относительно оси, лежащей в плоскости рамки и перпендикулярно линиям индукции однородного магнитного поля (B = 0,2 Тл). Каково среднее значение ЭДС индукции $<\mathscr{E}_i>$ за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения?
- 29. В однородном магнитном поле с индукцией B=0,4 Тл в плоскости, перпендикулярной линиям индукции поля, вращается стержень длиной l=10 см. Ось вращения проходит через один из концов стержня. Определить разность потенциалов U на концах стержня при частоте вращения n=16 с⁻¹.
- 30. Проволочный виток радиусом r=4 см, имеющий сопротивление R=0.01 Ом, находится в однородном магнитном поле с индукцией B=0.04 Тл. Плоскость рамки составляет угол $\alpha=30^{\circ}$ с линиями индукции поля. Какое количество электричества Q протечет по витку, если магнитное поле исчезнет?

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010\ \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Практическое занятие 10

Тема 10. Переменный электрический ток. Электромагнитные колебания в колебательном контуре. Электромагнитное поле. Колебательный контур. Описание электромагнитных колебаний в колебательном контуре. Переменный электрический ток: основные понятия и законы. Вихревое электрическое поле. Электромагнитное поле. Система уравнений Максвелла для электромагнитного поля.

Цель занятия: рассмотреть основные особенности электромагнитного поля и его основные характеристики.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных особенностей электромагнитного поля и его основных характеристик;

умения – применять полученные знания при решении задач.

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные особенности электромагнитного поля и его основные характеристики в их взаимосвязи, формировать навыки по применению основных особенностей электромагнитного поля и его основных характеристик к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того, она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Период колебаний в электрическом колебательном контуре $T = 2\pi\sqrt{LC}$, где L – индуктивность соленоида, C – емкость конденсатора.

Скорость распространения электромагнитной волны

$$\upsilon = \frac{c}{\sqrt{\varepsilon \mu}}$$

где c — скорость света в вакууме, ε — диэлектрическая и μ — магнитная проницаемости среды.

Вектор Пойнтинга

 $\vec{p} = \vec{E} \times \vec{H}$,

где \vec{E} и \vec{H} – напряженности электрического и магнитного полей электромагнитной волны.

Примеры решения задач

Задача 1.Колебательный контур, состоящий из воздушного конденсатора с пластинами площадью S=100 см 2 и катушки с индуктивностью L=1 мк Γ н, резонирует на волну длиной λ =10 м. Определить расстояние между пластинами конденсатора.

Дано:

$$S=100 \text{ cm}^2=10^{-2} \text{ m}^2$$
 $L=1\text{m}$ κ Γ H $=10^{-6} \Gamma$ H
 $\lambda=10 \text{ m}$
 $d=?$

Емкость плоского конденсатора определяется по формуле

$$C = \frac{\varepsilon_0 \varepsilon S}{d}$$
 Следовательно, $d = \frac{\varepsilon_0 \varepsilon S}{C}$. (1)

Длина волны связана с периодом колебаний T и скоростью

с электромагнитных волн соотношением

$$\lambda = c \cdot T.$$

$$T = 2\pi \sqrt{LC}.$$
(2)

Выразив C из формулы Томсона, с учетом (2) и (1), получим

$$d = \frac{4\pi\varepsilon_0\varepsilon c^2 SL}{\lambda^2} = \frac{4\cdot 3.14^2\cdot 8.85\cdot 10^{-12}\cdot \left(3\cdot 10^8\right)^2\cdot 10^{-2}\cdot 10^{-6}}{10^2} = 3.14\cdot 10^{-3} = 3.14 \text{ mm}$$

Вопросы и задания:

Вопросы:

1. Электрические колебания в колебательном контуре, дифференциальное уравнение собственных электрических колебаний.

- 2. Затухающие колебания. Добротность контура. Вынужденные колебания. Резонанс.
- 3. Электромагнитная индукция. Вихревое электрическое поле.
- 4. Первое уравнение Максвелла. Ток смещения.
- 5. Второе уравнение Максвелла.
- 6. Система уравнений Максвелла.
- 7. Электромагнитные волны. Основные свойства электромагнитных волн.
- 8. Волновое уравнение. Плоская электромагнитная волна.
- 9. Скорость распределения электромагнитных волн.
- 10. Энергия и импульс электромагнитного поля. Вектор Умова Пойнтинга.
- 11. Экспериментальное исследование электромагнитных волн.
- 12. Шкала электромагнитных волн.

Задания:

- 1. По обмотке соленоида индуктивностью L=0,2 Γ н течет ток I=10 A. Определить энергию W магнитного поля соленоида.
- 2. Индуктивность L катушки (без сердечника) равна $0,1\,$ мГн. При какой силе тока I энергия W магнитного поля равна $100\,$ мкДж?
- 3. Соленоид содержит N=1000 витков. Сила тока I в его обмотке равна 1 А, магнитный поток Φ через поперечное сечение соленоида равен 0,1 мВб. Вычислить энергию W магнитного поля.
- 4. На железное кольцо намотано в один слой N=200 витков. Определить энергию W магнитного поля, если при токе I=2,5 A магнитный поток Φ в железе равен 0,5 мВб.
- 5. При некоторой силе тока I плотность энергии w магнитного поля соленоида (без сердечника) равна 0.2 Дж/м^3 . Во сколько раз увеличится плотность энергии поля при той же силе тока, если соленоид будет иметь железный сердечник?
- 6. Обмотка тороида с немагнитным сердечником имеет n=10 витков на каждый сантиметр длины. Определить плотность энергии w поля, если по обмотке течет ток I=16 A.
- 7. Обмотка тороида содержит n=10 витков на каждый сантиметр длины. Сердечник не магнитный. При какой силе тока I в обмотке плотность энергии w магнитного поля равна 1 Дж/м³?
- 8. Катушка индуктивностью L=1 м Γ н и воздушный конденсатор, состоящий из двух круглых пластин диаметром D=20 см каждая, соединены параллельно. Расстояние d между пластинами равно 1 см. Определить период T электрических колебаний в таком контуре.

- 9. Конденсатор электроемкостью C=500 пФ соединен параллельно с катушкой длиной l=40см и площадью S сечения, равной 5 см 2 . Катушка содержит N=1000 витков. Сердечник немагнитный. Найти период T электрических колебаний в этом контуре.
- 10. Колебательный контур состоит из катушки индуктивностью L=20 мк Γ н и конденсатора электроемкостью C=80 н Φ . Величина емкости может отклоняться от указанного значения на 2%. Вычислить, в каких пределах может изменяться длина волны, на которую резонирует контур.

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики.— М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010 \, \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Раздел 5. Волновая и квантовая оптика. Теория атома водорода по Бору.

Практическое занятие 13

Тема 13. Геометрическая оптика. Волновая оптика. Фотометрия. Основы геометрической оптики. Законы отражения и преломления света. Явление полного внутреннего отражения. Линзы, формула тонкой линзы. Оптическая Явление интерференции световых Условия линзы. волн. интерференционных максимумов И минимумов. Методы наблюдения интерференции света. Интерференция в тонких плёнках, на клине, кольца Ньютона. Дифракция световых волн. Принцип Гюйгенса-Френеля. Метод зон Френеля. Различные случаи возникновения дифракции. Дифракционная решётка. Разрешающая способность дифракционной решётки. Дисперсия света. Электронная теория дисперсии. Поглощение света. Рассеяние света. Эффект Доплера. Излучение Вавилова-Черенкова. Естественный и поляризованный свет. Поляризация при отражении и преломлении на границе раздела двух диэлектриков. Двойное лучепреломление. Вращение плоскости поляризации.

Цель занятия: рассмотреть основные законы геометрической оптики основные волновые свойства света.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - законов геометрической оптики, основных волновых свойств света; уметь – применять полученные знания при решении задач

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные законы геометрической оптики, основные волновые свойства света в их взаимосвязи, формировать навыки применения законов геометрической оптики, основных волновых свойств света к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того, она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме:

Абсолютный показатель преломления среды

$$n=\frac{c}{v}$$
,

где U – скорость света в среде, c – скорость света в вакууме.

Законы отражения света:

1. Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред,

восстановленный в точке падения луча, лежат в одной плоскости.

2. Угол отражения равен углу падения

$$\varepsilon' = \varepsilon$$

Законы преломления света:

- 1. Падающий луч, преломленный и перпендикуляр к границе раздела двух сред, проведенный в точке падения луча, лежат в одной плоскости.
- 2. Отношение синусов углов падения ε и преломления r есть величина постоянная, равная относительному показателю преломления двух сред

$$\frac{\sin \varepsilon}{\sin r} = n_{21},$$

где n_{21} — относительный показатель преломления (n_{21} = n_2 / n_1 , n_1 и n_2 — абсолютные показатели преломления).

Законы отражения и преломления справедливы и при обратном направлении хода световых лучей.

Оптическая сила линзы

$$\Phi = \frac{1}{f} = (n_{21} - 1) \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right),$$

где f — фокусное расстояние линзы; R_1 и R_2 — радиусы кривизны обеих поверхностей линзы (для вогнутой линзы считающиеся отрицательными).

Формула тонкой линзы:

$$\frac{1}{f} = \frac{1}{s} + \frac{1}{d},$$

где s — расстояние до предмета , d — расстояние до изображения. У рассеивающих линз фокусное расстояние и расстояние до изображения отрицательны.

Увеличение линзы

$$\Gamma = B/G = s/d$$
,

где B – размер изображения, G – размер предмета.

Оптическая длина пути в однородной среде

L=nl,

где l – геометрическая длина пути световой волны, n – показатель преломления среды.

Оптическая разность хода

$$\Delta = L_2 - L_1,$$

где L_1 и L_2 – оптические пути двух световых волн.

Условие интерференционных максимумов

$$\Delta = \pm m\lambda, m = 0,1,2,...;$$

условие интерференционных минимумов

$$\Delta = \pm (2m+1)\lambda/2, m = 0,1,2,...,$$

где λ – длина световой волны.

Ширина интерференционных полос в опыте Юнга

$$\Delta x = \frac{\lambda_0 l}{d},$$

где d — расстояние между когерентными источниками света, l — расстояние от источников до экрана.

Оптическая разность хода в тонких пленках:

в проходящем свете

$$\Delta = 2d\sqrt{n^2 - \sin^2 i};$$

в отраженном свете

$$\Delta = 2d\sqrt{n^2 - \sin^2 i} - \frac{\lambda_0}{2},$$

где d – толщина пленки, n – показатель преломления пленки, i – угол падения света.

Радиусы светлых колец Ньютона в проходящем свете

или темных в отраженном

$$r_{\rm m} = \sqrt{m\lambda R}; \quad m = 0, 1, 2, ...;$$

и темных колец в проходящем свете или

светлых в отраженном свете

$$r_{\rm m} = \sqrt{(2m-1)\lambda R/2}; \quad m = 1, 2, ...,$$

где R – радиус кривизны линзы, λ – длина световой волны.

Радиусы зон Френеля:

для сферической волновой поверхности

для плоской волновой поверхности

$$r_{\rm m} = \sqrt{m\lambda ab/(a+b)}; \quad m = 1, 2, ...;$$

 $r_{\rm m} = \sqrt{m\lambda b}; \quad m = 1, 2, ...,$

где a — радиус волновой поверхности, b — кратчайшее расстояние от волновой поверхности до точки наблюдения.

Условие дифракционных максимумов

от одной щели

$$a \sin \varphi_{\rm m} = \pm (2m+1)\lambda/2; \quad m = 1, 2, ...;$$

 $a \sin \varphi_{\rm m} = \pm m\lambda, m = 1, 2, ...,$

где *a* – ширина щели.

Условие главных максимумов дифракционной решетки

и дифракционных минимумов

$$d\sin\varphi_{\rm m}=\pm m\lambda;\quad m=0,1,2,...,$$

где d — постоянная дифракционной решетки.

Разрешающая способность дифракционной решетки

$$R = \frac{\lambda}{\Delta \lambda} = mN,$$

где $\Delta\lambda$ — минимальная разность длин волн двух, спектральных линий, разрешаемых решеткой, m — порядок спектра, N — общее число щелей решетки.

Формула Вульфа – Брэггов

$$2d\sin\theta_{\rm m}=m\lambda, m=1,2,...,$$

где d — расстояние между атомными плоскостями кристалла, $\theta_{\rm m}$ — угол скольжения рентгеновских лучей.

Степень поляризации светового луча

$$p = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}},$$

где I_{max} и I_{min} — максимальная и минимальная интенсивности света.

Закон Брюстера

$$tg\,\varepsilon_{\rm B}=\frac{n_2}{n_1},$$

где $\varepsilon_{\rm b}$ — угол Брюстера, n_1 и n_2 — показатели преломления первой и второй среды.

Закон Малюса $I = I_0 \cos^2 \alpha$,

где I_0 и I — интенсивность плоскополяризованного света, падающего и прошедшего через поляризатор, соответственно, α — угол между плоскостью поляризации падающего света и главной плоскостью поляризатора.

Угол поворота плоскости поляризации света

в кристаллах и чистых жидкостях

$$\varphi = \varphi_0 l;$$

в растворах

$$\varphi = [\varphi_0]cl$$

где φ_0 — постоянная вращения, $[\varphi_0]$ — удельная постоянная вращения, c — концентрация оптически активного вещества в растворе, l — расстояние, пройденное светом в оптически активном веществе.

Фазовая скорость света

$$\upsilon = \frac{c}{n}$$

где c – скорость света в вакууме, n – показатель преломления среды.

Коэффициент дисперсии вещества

$$D = \frac{dn}{d\lambda}$$
.

Групповая скорость света

$$u = \frac{c}{n} \left(1 + \frac{\lambda}{n} \frac{dn}{d\lambda} \right).$$

Направление излучения Вавилова-Черенкова

$$\cos \theta = \frac{c}{m}$$

где v — скорость заряженной частицы.

Примеры решения задач

Задача 1. Две плосковыпуклые линзы, сложенные плоскими сторонами, образуют линзу с фокусным расстоянием F_1 . Найти фокусное расстояние F_2 линзы, которая получится, если сложить эти линзы выпуклыми сторонами, а пространство между ними заполнить водой. Показатель преломления стекла n_1 =1,66, воды n_2 =1,33.

Дано

 $F_1 = 10 \text{cm}$

 n_1 =1,66

В первом случае мы имеем двояковыпуклую линзу, оптическая сила которой определяется по формуле

$$\Phi_1 = \frac{1}{F_1} = (n_1 - 1) \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right),\tag{1}$$

 n_2 =1,33 где R_1 и R_2 – радиусы кривизны выпуклых поверхностей линз. Во втором случае к двум плосковыпуклым линзам добавляетс третья линза (водяная) с вогнутыми поверхностями, с отрицатель-Во втором случае к двум плосковыпуклым линзам добавляется ными радиусами кривизны R_1 и R_2 и оптической силой

$$\Phi = \frac{1}{F} = (n_{21} - 1) \cdot \left(-\frac{1}{R_1} - \frac{1}{R_2} \right). \tag{2}$$

Здесь $n_{21} = n_2/n_1$ – относительный показатель преломления.

Оптическая сила сложенных вплотную линз

$$\Phi_2 = \Phi_1 + \Phi$$
 или $\frac{1}{F_2} = \frac{1}{F_1} + \frac{1}{F}$ (3)

Подставим в (3) выражение (2)

$$\frac{1}{F_2} = \frac{1}{F_1} + (n_2 - 1) \cdot \left(-\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{1}{F_1} - (n_2 - 1) \cdot \left(\frac{1}{R_1} + \frac{1}{R_2} \right) =
= \frac{1}{F_1} - (n_2 - 1) \cdot \frac{n_1 - 1}{n_1 - 1} \cdot \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$
(4)

Подставим в (4) левую часть (1):

$$\frac{1}{F_2} = \frac{1}{F_1} - \frac{n_2 - 1}{n_1 - 1} \cdot \frac{1}{F_1} = \frac{1}{F_1} \cdot \left(1 - \frac{n_2 - 1}{n_1 - 1}\right) = \frac{1}{F_1} \cdot \frac{n_1 - n_2}{n_1 - 1},$$

откуда
$$F_2 = \frac{n_1 - 1}{n_1 - n_2} \cdot F = \frac{1,66 - 1}{1,66 - 1,33} \cdot 10 = \frac{0,66}{0,33} \cdot 10 = 20 \text{ см}.$$

Задача 2. На мыльную пленку с абсолютным показателем преломления n=1,3,находящуюся в воздухе, падает нормально пучок лучей белого света. При какой наименьшей толщине пленки d отраженный свет с длиной волны λ =0,55 мкм окажется максимально усиленным в результате интерференции.

Дано:
$$n=1,3$$
 Оптическая разность хода в тонких пленках в отраженном свете $\lambda=0,55$ мкм определяется по формуле $\Delta=2d\sqrt{n^2-\sin^2i}-\frac{\lambda_0}{2},$ (1) $d=?$ где d – толщина пленки, n – показатель преломления пленки, i – угол падения света

Так как свет падает нормально, то $i = 0^{\circ}$, значит $\sin i = 0$, тогда (1) примет вид

$$\Delta = 2dn - \frac{\lambda}{2} \tag{2}$$

Условие максимумов интенсивности света при интерференции

$$\Delta = \pm m\lambda \; ; \; m = 0, 1, 2.3 \ldots \tag{3}$$

Минимальная разность хода возможна при m = 0.

Из (2) и (3) следует
$$2dn - \frac{\lambda}{2} = 0$$
, откуда

$$d = \frac{\lambda}{4n} = \frac{0.55}{4 \cdot 1.3} = 0.1 \text{MKM}.$$

Задача 3. Сколько штрихов на каждый миллиметр содержит дифракционная решетка, если при наблюдении в монохроматическом свете (λ =0,6 мкм), максимум пятого порядка отклонен на угол φ =18°?

Дано: Постоянная
$$d$$
 дифракционной решетки, длина волны λ и λ =0,6мкм угол φ отклонения лучей, соответствующий m - му дифракционному максимуму, связаны соотношением $d \cdot \sin \varphi = m\lambda$,
$$n = ?$$
 откуда
$$d = \frac{m\lambda}{\sin \varphi}$$
.

Число штрихов на миллиметр

$$N_0 = \frac{1}{d} = \frac{\sin \varphi}{k \cdot \lambda} = \frac{\sin 18^{\circ}}{5 \cdot 0.6 \cdot 10^{-3}} = \frac{0.309}{3 \cdot 10^{-3}} = 103 \,\text{mm}^{-1}.$$

Задача 4. В фотометре одновременно рассматривают две половины поля зрения: в одном видна эталонная светящаяся поверхность с яркостью L_2 =5 ккд/м², в другой — испытуемая поверхность, свет от которой проходит через 2 николя. Граница между обеими половинами поля зрения исчезает, если второй николь повернуть относительно первого на угол α =45°. Найти яркость L_1

испытуемой поверхности, если известно, что в каждом из николей интенсивность падающего на него света уменьшается на 8%.

Дано:

$$L_2 = 5 \frac{\text{KK} \text{M}}{\text{M}^2} = 5 \cdot 10^3 \frac{\text{K} \text{M}}{\text{M}^2}$$

 $\alpha = 45^\circ$
 $k = 0, 08$

Интенсивность света, прошедшего через 1-й николь

$$I' = \frac{1}{2}I_1(1-k),$$

где I' - интенсивность вышедшего из николя света, I_1 – интенсивность падающего естественного света, k – относительная потеря интенсивности в николе. При прохождении поляризованного света через 2-й

 $L_1 = ?$

николь, с учетом потфри интенсивности в нем из закона Малюса следует, что интенсивность света будет равна

$$I_2 = I' \cdot (1-k)\cos^2 \alpha = \frac{1}{2}(1-k)^2 \cdot I_1 \cdot \cos^2 \alpha.$$

Так как яркость $L = \frac{I}{\varsigma}$, где S – площадь поверхности, на которую падает свет, то $I_1 = L_1 \cdot S$, а $I_2 = L_2 \cdot S$, то

$$\begin{split} L_2 \cdot S &= L_1 \cdot S \cdot \frac{1}{2} \cdot \left(1 - k\right)^2 \cdot \cos^2 \alpha. \\ L_1 &= \frac{2L_2}{\left(1 - k\right)^2 \cdot \cos^2 \alpha} = \frac{2 \cdot 5 \cdot 10^3}{\left(0.92\right)^2 \cdot \cos^2 45^\circ} = 23.6 \cdot 10^3 \, \frac{\text{KL}}{\text{M}^2} = 23.6 \cdot \frac{\text{KKL}}{\text{M}^2}. \end{split}$$

Вопросы и задания:

Вопросы:

- 1. Основные законы оптики.
- 2. Полное отражение.
- 3. Линзы. Формула линзы.
- 4. . Когрентность и монохроматичность световых волн.
- 5. Интерференция света.
- 6. Методы наблюдения интерференции света.
- 7. Полосы равного наклона.
- 8. Полосы равной толщины.
- 9. Кольца Ньютона.
- 10. Дифракция света.
- 11. Принцип Гюйгенса-Френеля.
- 12. Дифракция Френеля.
- 13. Дифракция Фраунгофера.
- 14. Дифракция на пространственной решетке.
- 15. Дисперсия света.
- 16. Различия в дифракционном и призматическом спектрах.
- 17. Нормальная и аномальная дисперсия.

- 18. Поглощение (абсорбция) света.
- 19. Эффект Доплера.
- 20. Поляризация света.
- 21. Естественный и поляризованный свет.
- 22. Закон Малюса.
- 23. Прохождение света через два поляризатора. Поляризация света при отражении и преломлении на границе двух диэлектриков.

Задания:

- 1. Плосковыпуклая линза с фокусным расстоянием f = 1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r_5 =1,1 мм. Определить длину световой волны λ .
- 2. Оптическая сила Φ объектива телескопа равна 0,5 дптр. Окуляр действует как лупа, дающая увеличение $\Gamma_1 = 10$. Какое увеличение Γ_2 дает телескоп?
- 3. Лупа дает увеличение Γ =2. Вплотную к ней приложили собирающую линзу с оптической силой Φ_1 =20 дптр. Какое увеличение Γ_2 будет давать составная лупа?
- 4. Пределы аккомодации газа близорукого человека без очков лежат между $a_1 = 16$ см и $a_2 = 80$ см. В очках он хорошо видит удаленные предметы. На каком минимальном расстоянии d он может держать книгу при чтении в очках? Считать расстояние наилучшего зрения D=25 см.
- 5. Человек без очков читает книгу, располагая ее перед собой на расстоянии a=12,5 см. Какой оптической силы Φ очки следует ему носить?
- 6. Главное фокусное расстояние f собирающей линзы в воздухе равно 10 см. Определить, чему оно равно: 1) в воде; 2) в коричном масле.
- 7. Каково возможное наименьшее расстояние l между предметом и его действительным изображением, создаваемым собирающей линзой с главным фокусным расстоянием f=12 см?
- 8. Луч света переходит из среды с показателем преломления n_1 в среду с показателем преломления n_2 . Показать, что если угол между отраженным и преломленным и преломленным лучами равен $\pi/2$, то выполняется условие

$$tg\, arepsilon_{_1} = rac{n_2}{n_1} (arepsilon_{_1}$$
-угол падения).

- 9. Пучок параллельных лучей шириной a падает на толстую стеклянную пластину под углом $\varepsilon = 60^\circ$ и, преломляясь, переходит в стекло. Ширина a пучка в воздухе равна 10 см. Определить ширину b пучка в стекле.
- 10. Луч падает под углом $\varepsilon = 60^\circ$ на стеклянную пластинку толщиной d =30 мм. Определить боковое смещение Δx луча после выхода из пластинки.
- 11. На мыльную пленку (n=1,3), находящуюся в воздухе, падает нормально пучок лучей белого света. При какой наименьшей толщине d пленки отраженный свет с длиной волны λ =0,55 мкм окажется максимально усиленным в результате интерференции.
- 12. Пучок монохроматических (λ =0,6 мкм) световых волн падает под углом ε_1 =30° на находящуюся в воздухе мыльную пленку (n=1,3). При какой

наименьшей толщине d пленки отраженные световые волны будут максимально ослаблены интерференцией? Максимально усилены?

- 13. На тонкий стеклянный клин (n=1,55) падает нормально монохроматический свет. Двугранный угол α между поверхностями клина равен 2'. Определить длину световой волны λ , если расстояние b между соседними интерференционными максимумами в отраженном свете равно 0,3 мм.
- 14. Двугранный угол стеклянного клина равен 0,2'. На клин нормально к его поверхности падает пучок лучей монохроматического света с длиной волны λ =0,55 мкм. Определить ширину b интерференционной полосы.
- 15. На тонкий стеклянный клин в направлении нормали к его поверхности падает монохроматический свет (λ =600 нм). Определить угол θ между поверхностями клина, если расстояние b между смежными интерференционными минимумами в отраженном свете равно 4 мм.
- 16. В опыте Юнга расстояние d между щелями равно 0,8 мм. На каком расстоянии l от щелей следует расположить экран, чтобы ширина b интерференционной полосы оказалась равной 2 мм? (λ =640 нм).
- 17. Расстояние d между двумя щелями в опыте Юнга равно 1 мм, расстояние l от щелей до экрана равно 3 м. Определить длину волны λ , испускаемой источником
- монохроматического света, если ширина b полос интерференции на экране равна 1,5 мм.
- 18. Расстояние d между двумя когерентными источниками света (λ =500 нм) равно 0,1 мм. Расстояние b между интерференционными полосами на экране в средней части интерференционной картины равно 1 см. Определить расстояние l от источников до экрана.
- 19 .Найти все длины волн видимого света (от 0,76 до 0,38 мкм), которые будут:
- 1) максимально усилены; 2) максимально ослаблены при оптической разности хода Δ интерферирующих волн, равной 1,8 мкм.
- 20. На тонкий стеклянный клин в направлении нормали к его поверхности падает монохроматический свет (λ =380 нм). Определить угол θ между поверхностями клина, если расстояние b между смежными интерференционными минимумами в отраженном свете равно 6 мм.
- 21. Какое наименьшее число N_{\min} штрихов должна содержать дифракционная решетка, чтобы в спектре 2-го порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ_1 =589 нм и λ_2 =589,6? Какова длина l такой решетки, если постоянная решетки d=5 мкм?
- 22. Дифракционная решетка освещена нормально падающим монохроматическим светом. В дифракционной картине максимум второго порядка отклонен на угол $\varphi_1 = 14^\circ$. На какой угол φ_2 отклонен максимум третьего порядка?
- 23. Дифракционная решетка содержит n=200 штрихов на 1 мм. На решетку падает нормально монохроматический свет (λ =0,6 мкм). Максимум какого наибольшего порядка дает эта решетка?

- 24. На дифракционную решетку, содержащую n=400 штрихов на 1 мм, падает нормально монохроматический свет (λ =0,6 мкм). Найти общее число дифракционных максимумов, которое дает эта решетка. Определить угол φ дифракции, соответствующий последнему максимуму.
- 25. При освещении дифракционной решетки белым светом спектры второго и третьего порядков отчасти перекрывают друг друга. На какую длину волны в спектре второго порядка накладывается фиолетовая граница ($\lambda = 0.4$ мкм) спектра третьего порядка.
- 26. На дифракционную решетку, содержащую n=600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить ширину b спектра первого порядка на экране, если расстояние от линзы до экрана L=1,2 м. Границы видимого спектра $\lambda_{\rm kp}$ = 780нм, $\lambda_{\rm d}$ = 400 нм.
- 27. Сколько штрихов на каждый миллиметр содержит дифракционная решетка, если при наблюдении в монохроматическом свете(λ =0,6мкм), максимум пятого порядка отклонен на угол φ =18°?
- 28. На щель шириной a=0,1 мм падает нормально монохроматический свет (λ = 0,5 мкм). За щелью помещена собирающая линза, в фокальной плоскости которой находится экран. Что будет наблюдаться на экране, если угол φ дифракции равен: 1) 17′; 2) 43′.
- 29. На узкую щель падает нормально монохроматический свет. Угол φ отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1°. Скольким длинам волн падающего света равна ширина щели?
- 30. На щель шириной 0,05 мм падает нормально монохроматический свет (λ =0,6 мкм). Определить угол φ между первоначальным направлением пучка света и направлением на четвертую темную дифракционную полосу.
- 31. Плоская световая волна падает нормально на диафрагму с круглым отверстием. В результате дифракции в некоторых точках оси отверстия, находящихся на расстояниях b_i от его центра, наблюдаются максимумы интенсивности. 1) Получить вид функции $b=f(r,\lambda,n)$, где r-радиус отверстия; λ длина волны; n-число зон Френеля, открываемых для данной точки оси отверстия. 2) Сделать то же самое для точек оси отверстия, в которых наблюдаются минимумы интенсивности.
- 32. Посредине между точечным источником монохроматического света λ =550 нм и экраном находится диафрагма с круглым отверстием. Дифракционная картина наблюдается на экране, расположенном на расстоянии 5 м от источника. Определите радиус отверстия, при котором центр дифракционных колец, наблюдаемых на экране, будет наиболее темным.
- 33. Пучок света, идущий в воздухе, падает на поверхность жидкости под углом $\varepsilon_1 = 54^\circ$. Определить угол преломления ε_2 пучка, если отраженный пучок полностью поляризован.

- 34. На какой угловой высоте φ над горизонтом должно находиться Солнце, чтобы солнечный свет, отраженный от поверхности воды, был полностью поляризован?
- 35. Угол Брюстера ε_b при падении света из воздуха на кристалл каменной соли равен 57°. Определить скорость света в этом кристалле.
- 36. Предельный угол ε_1 полного отражения пучка света на границе жидкости с воздухом равен 43°. Определить угол Брюстера $\varepsilon_{\rm b}$ для падения луча из воздуха на поверхность этой жидкости.
- 37. Угол α между плоскостями пропускания поляризатора и анализатора равен 45°. Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличится до 60°?
- 38. Во сколько раз ослабляется интенсивность света, проходящего через два николя, плоскости пропускания которых образуют угол α =30°, если в каждом из николей в отдельности теряется 10 % интенсивности падающего на него света?
- 39. Пластинку кварца толщиной d_1 =2 мм, вырезанную перпендикулярно оптической оси, поместили между параллельными николями, в результате чего плоскость поляризации света повернулась на угол φ =53°. Определить толщину d_2 пластинки, при которой данный монохроматический свет не проходит через анализатор.
- 40. Никотин (чистая жидкость), содержащийся в стеклянной трубке длиной d=8 см, поворачивает плоскость поляризации желтого света натрия на угол $\varphi=137^{\,0}$. Плотность никотина $\rho=1,01\cdot10^3\,\mathrm{kr/m^3}$. Определить удельное вращение $[\varphi_0]$ никотина.
- 41. Раствор глюкозы с массовой концентрацией C_1 =280 кг/м 3 , содержащийся в стеклянной трубке поворачивает плоскость поляризации монохроматического света, проходящего через этот раствор, на угол φ_1 =32 0 . Определить массовую концентрацию C_2 глюкозы в другом растворе, налитом в трубку такой же длины, если он поворачивает плоскость поляризации на угол φ_2 =24 0 .

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010 \, \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Практическое занятие 14 - 15

Тема 14 - 15. Тепловое излучение. Квантовая природа излучения. Законы теплового излучения. Закон Кирхгофа. Законы Стефана-Больцмана, Вина. Формулы Релея-Джинса и Планка. Фотоэффект. Законы внешнего фотоэффекта. Уравнение Эйнштейна. Применения фотоэффекта. Масса, энергия и импульс фотона. Давление света с квантовой точки зрения. Эффект Комптона.

Цель занятия: рассмотреть основные квантовые свойства света.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных квантовых свойств света;

умения – применять полученные знания при решении задач

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные квантовые свойства света в их взаимосвязи, формировать навыки применения основных квантовых свойств света к грамотному научному анализу ситуаций, с которыми приходится сталкиваться при создании новых технологий. Кроме того, она способствует формированию у студентов основ естественнонаучной картины мира.

Теоретический материал по теме

Закон Стефана-Больцмана

 $R = \sigma T^4$.

где R — энергетическая светимость черного тела, T — термодинамическая температура тела, σ — постоянная Стефана-Больцмана.

Закон смещения Вина

 $\lambda_{\max} = \frac{b}{T},$

где λ_{\max} — длина волны, на которую приходится максимум энергии излучения черного тела, b — постоянная Вина.

Второй закон Вина: Зависимость максимальной спектральной плотности

излучательности от температуры

 $(r_{\lambda,\mathrm{T}})_{\mathrm{max}} = CT^5,$

где $C = 1,3 \cdot 10^{-5} \text{ Bt/} (\text{м}^3 \cdot \text{K}^5) - \text{постоянная}.$

Давление света при нормальном

падении на поверхность

$$p = \frac{I}{c}(1+\rho) = w(1+\rho),$$

где I — интенсивность света, ρ — коэффициент отражения, w — объемная плотность энергии излучения.

Энергия фотона

$$\varepsilon = hv = \frac{hc}{\lambda},$$

где h – постоянная Планка, v – частота света.

Уравнение Эйнштейна для внешнего фотоэффекта

$$\varepsilon = A + T_{\text{max}}$$
,

где A — работа выхода электронов из металла, $T_{\rm max}$ — максимальная кинетическая энергия фотоэлектронов.

Комптоновская длина волны частицы

$$\lambda_{\rm C} = \frac{h}{m_0 c} = \frac{hc}{E_0},$$

где m_0 – масса покоя частицы, E_0 – энергия покоя частицы.

Изменения длины волны излучения

при эффекте Комптона

$$\Delta \lambda = \lambda' - \lambda = \lambda_{c} (1 - \cos \theta) = 2\lambda_{c} \sin^{2}(\theta/2),$$

где λ и λ' — длина волны падающего и рассеянного излучения, соответственно; θ — угол рассеяния.

Формула Бальмера-Ридберга

для водородоподобных атомов

$$\frac{1}{\lambda} = Rz^2 \left(\frac{1}{n^2} - \frac{1}{k^2} \right),$$

где λ — длина волны спектральной линии, R — постоянная Ридберга, z — порядковый номер элемента, n = 1,2,3,..., k = n+1, n+2,...

Первый постулат Бора. Атомы могут склоль угодно долго находиться в стационарных состояниях, не излучая энергии. Стационарными состояниями (орбитами электронов) являются те, на которых выполняется условие:

$$m \cdot \nu_{\rm n} \cdot r_{\rm n} = n\hbar \quad (n = 1, 2, 3, \ldots),$$

где n — номер орбиты (главное квантовое число), $r_{\rm n}$ — радиус орбиты, m - масса электрона, $\upsilon_{\rm n}$ — его скорость на n-ой орбите радиуса, $\hbar = \frac{h}{2\pi}$ — постоянная Дирака.

Второй постулат Бора. При переходе с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

$$h\nu = E_{\rm n} - E_{\rm m},$$

где $E_{\rm n}$ и $E_{\rm m}$ – энергии стационарных состояний атома до и после излучения (поглощения), ν – частота излученного (поглощенного) фотона.

Радиус *n*-ой стационарной орбиты электрона

в водородоподобном атоме

$$r_{\rm n} = \frac{\hbar \cdot 4\pi \varepsilon_0}{mze^2} n^2$$
, $(n = 1, 2, 3, ...)$

где z — порядковый номер элемента; e — заряд и m — масса электрона. ε_0 — электрическая постоянная.

Энергия электрона в водородоподобном атоме $E_{\rm n} = -\frac{1}{n^2} \frac{z^2 m e^4}{8 h^2 \varepsilon_0^2}$, (n = 1, 2, 3, ...).

Спектральные линии характеристического

рентгеновского излучения

$$\frac{1}{\lambda} = R(z-a)^2 \left(\frac{1}{n^2} - \frac{1}{k^2}\right),$$

где a — постоянная экранирования.

Примеры решения задач

Задача 1. Мощность излучения шара радиусом R=10 см при некоторой постоянной температуре T равна 1 кВт. Найти эту температуру, считая шар серым телом с коэффициентом черноты $a_T = 0.25$.

Задача 2. Максимальная спектральная плотность энергетической светимости $(R_{\lambda,T})_{\text{max}}$ абсолютно черного тела равна $4,16 \cdot 10^{11} \text{ Bt/m}^2$. На какую длину волны λ_{m} она приходится?

Дано:
$$(R_{\lambda,T})_{\text{max}} = 4,16 \cdot 10^{11} \text{ Bt/m}^2$$
 Максимальная спектральная плотность энергетической светимости пропорциональна 5-ой степени абсолютной температуры (второй закон Вина), значит
$$(R_{\lambda,T})_{\text{max}} = C \cdot T^5, \text{ где } C = 1,3 \cdot 10^{-5} \text{ Bt/(m}^3 \text{ K}^5).$$
 Следовательно,
$$T = \sqrt[5]{\frac{(R_{\lambda,T})_{\text{max}}}{C}}$$

Согласно закону смещения Вина

$$\lambda_{\rm m} = \frac{b}{T}$$
, где $b = 2.9 \cdot 10^{-3} \,\mathrm{M} \times \mathrm{K}$, тогда

$$\lambda_{\rm m} = \frac{b}{\sqrt[5]{\frac{\left(R_{\lambda,\rm T}\right)_{\rm max}}{C}}} = \frac{2.9 \cdot 10^{-3}}{\sqrt[5]{\frac{4.16 \cdot 10^{11}}{1.3 \cdot 10^{-5}}}} = 1,45 \cdot 10^{-6} \,\mathrm{m} = 1,45 \,\mathrm{mkm}.$$

Задача **3.** Для прекращения фототока, вызванного облучением платиновой ультрафиолетовым светом приложить пластинки, ОНЖУН задерживающую разность потенциалов U_1 =3,7 В. Если платину заменить другим материалом, то задерживающая разность потенциалов придется увеличить до 6В. Определить работу выхода A_2 электронов с поверхности этого материала.

Дано:
$$U_1$$
=3,7 В U_2 =6 В A_2 = ?

По таблице находим работу выхода электронов с поверхности платины: $A_1=10,1\cdot 10^{-19}\,$ Дж. Согласно уравнению Эйнштейна для фотоэффекта имеем

$$h \nu = A + T_{\max},$$

где T_{\max} — максимальная кинетическая энергия фотоэлектронов, вырванных светом с поверхности материала. По условию задачи фототок отсутствует из-за задерживающей разности потенциалов U. Следовательно, $T_{\max} = e \cdot U$.

Так как оба материала облучаются одним и тем же светом, то

$$A_1 + e \cdot U_1 = A_2 + e \cdot U_2.$$

Следовательно,

$$A_2=A_1+e\ (U_1-U_2)=6,42\cdot 10^{-19}$$
Дж.

Задача 4. Монохроматическое излучение с длиной волны λ =500 нм падает нормально на плоскую зеркальную поверхность и давит на нее с силой F=10 нН. Определить число N_1 фотонов, ежесекундно падающих на эту поверхность.

Дано: $\lambda = 500$ нм= $5 \cdot 10^{-7}$ м
$F=10$ н $H=10^{-8}$ Н
t=1c
$N_1 = ?$

Давление, производимое светом при нормальном падении,

$$P = \frac{E_{\rm e}}{c} \cdot (1 + \rho) ,$$

где $E_{\rm e}$ – облученность поверхности, c – скорость света,

 ρ — коэффициент отражения (для зеркальной поверхности ρ =1). Сила светового давления на поверхность равна

$$F = P \cdot S = \frac{E_{\rm e} \cdot S}{C} (1 + \rho).$$

Так как $E_e \cdot S = \Phi_e$ - поток энергии излучения, падающей на площадку S в единицу времени, то $\Phi \cdot t = W$ - энергия излучения, падающая на зеркальную поверхность. Очевидно

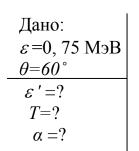
$$F = \frac{W(1+\rho)}{c \cdot t}$$
, откуда $W = \frac{F c t}{1+\rho}$

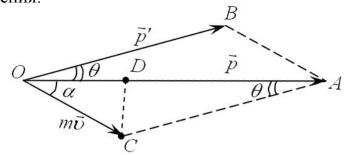
Число фотонов можно найти как отношение W к энергии одного фотона $\varepsilon = h v = h c/\lambda$:

$$N = \frac{W}{\varepsilon} = \frac{F c t \lambda}{hc(1+\rho)} = \frac{F \cdot \lambda \cdot t}{h(1+\rho)} = \frac{10^{-8} \cdot 5 \cdot 10^{-7} \cdot 1}{6,63 \cdot 10^{-3} (1+1)} = 3,77 \cdot 10^{18}.$$

Задача 5.

Фотон с энергией ε =0, 75 МэВ рассеялся на свободном электроне под углом θ =60°. (Считая, что кинетическая энергия и импульс электрона до взаимодействия с фотоном пренебрежимо малы), определить: 1) энергию ε' рассеянного фотона; 2) кинетическую энергию T электрона отдачи; 3)направление его движения.





Воспользуемся формулой Комптона

$$\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta) ,$$

где λ' и λ длины волн рассеянного и падающего излучения, соответственно, m_0 -масса покоя электрона, c - скорость света.

Как известно, энергия фотона $\varepsilon = hv = hc/\lambda$. Следовательно, $\lambda = hc/\varepsilon$ и формула (1) преобретает вид:

$$\frac{hc}{\varepsilon'} - \frac{hc}{\varepsilon} = \frac{h}{m_0 c} (1 - \cos \theta) \quad \text{или } \frac{1}{\varepsilon'} - \frac{1}{\varepsilon} = \frac{1 - \cos \theta}{m_0 c^2}, \tag{1}$$

Воспользовавшись тем, что $m_0c^2 = E_0$ —энргия покоя электрона, раная 0,511Мэв, окончательно получим

$$\varepsilon' = \frac{\varepsilon}{\frac{\varepsilon}{E_0} (1 - \cos \theta) + 1} = \frac{0.75}{0.75} \cdot (1 - \cos 60^\circ) + 1 = 0.43 \text{ M} \cdot 3B.$$

Кинетическая энергия электрона отдачи может быть найдена из закона сохранения энергии. Учитывая, что кинетическая энергия электрона до взаимодействия с фотоном пренебрежимо мала, имеем:

$$\varepsilon = \varepsilon' + T$$
.

Следовательно, $T = \varepsilon - \varepsilon' = 0$, 32 МэВ.

Направление движения электрона отдачи найдем из закона сохранения импульса, принимая во внимание, что импульс электрона до взаимодействия с фотоном пренебрежимо мал. В результате имеем

$$\vec{P} = \vec{P}' + m\vec{\upsilon}$$
,

где P – импульс падающего фотона, P' - импульс рассеянного фотона, mv – импульс электрона отдачи.

Угол α (см. рис.) определяет направление движения электрона отдачи.

Из треугольников OCD и ACD(см. рис.) следует, что

$$tglpha = rac{ig|CDig|}{ig|ODig|} = rac{ig|CAig|\cdot\sin heta}{ig|OAig|-ig|CAig|\cdot\cos heta}$$
 или $tglpha = rac{P'\cdot\sin heta}{P-P'\cdot\cos heta} = rac{\sin heta}{rac{P}{P'}-\cos heta},$

Ho импульсы фотонов $P = \frac{\varepsilon}{c}, P' = \frac{\varepsilon'}{c}$, тогда $tg\alpha = \frac{\sin\theta}{\frac{\varepsilon}{\varepsilon'} - \cos\theta}$.

Из формулы (1) следует, что $\frac{\mathcal{E}}{\mathcal{E}'} = \frac{\mathcal{E}}{E_0} (1 + \cos \theta) + 1$, следовательно, окончательно получим

$$tg\alpha = \frac{\sin\theta}{\left(1 + \frac{\varepsilon}{E_0}\right)\left(1 - \cos\theta\right)} = \frac{\sin 60^{\circ}}{\left(1 + \frac{0.75}{0.511}\right)\left(1 - \cos 60^{\circ}\right)} = 0,701,$$

откуда $\alpha = arctg(0,701) \approx 35^{\circ}$.

Задача 6. Получить формулу для радиусов орбит электрона в атоме водорода и вычислить радиус первой орбиты (первый боровский радиус), а также скорость электрона на этой орбите.

Решение.

Из первого постулата Бора имеем

$$m\upsilon r = n\frac{h}{2\pi},$$

где m — масса электрона, v — его скорость, r — радиус орбиты, h — постянная Планка.

Для первой орбиты
$$n=1$$
, и поэтому $m\upsilon r = \frac{h}{2\pi}$. (1)

Сила кулоновсого притяжения электрон-ядро является центростремительной силой, поэтому из второго закона Ньютона имеем

$$\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = \frac{m\upsilon^2}{r} \qquad \text{или} \qquad m\upsilon^2 = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}, \qquad (2)$$

где e — заряд электрона.

Решая совместно уравнения (1) и (2), найдем

$$r = \frac{\varepsilon_0 h^2}{\pi me} = \frac{4 \cdot 3.14 \cdot 8.85 \cdot 10^{-12} \cdot 1.05 \cdot 10^{-34}}{9.11 \cdot 10^{-31} \cdot 1.6 \cdot 10^{-16}} = 5.29 \cdot 10^{-11} \text{ M}$$

Из формулы (1) получим, что

$$\upsilon = \frac{h}{2\pi mr} = \frac{1.05 \cdot 10^{-34}}{9.11 \cdot 10^{-31} \cdot 5.29 \cdot 10^{-11}} = 2.18 \cdot 10^{6} \,\text{m/c}$$

Вопросы и задания:

Вопросы:

- 1. Квантовая природа излучения.
- 2. Тепловое излучение и его характеристики.
- 3. Законы Кирхгофа, Стефана Больцмана, Вина.
- 4. Формулы Рэлея Джинса и Планка.
- 5. Температуры: радиационная, цветовая, яркостная.
- 6. Законы фотоэффекта.
- 7. Давление света.
- 8. Эффект Комптона.
- 9. Опыты Резерфорда по рассеянию α -частиц.
- 10. Модель атома по Резерфорду.
- 11. Спектры излучения атомов. Формула Ридберга.
- 12. Постулаты Бора.
- 13. Теория Бора водородоподобного атома.
- 14.Опыт Франка и Герца.

Задания:

- 1. Определить энергию W, излучаемую за время t=1 мин из смотрового окошка площадью S=8 см 2 плавильной печи, если ее температура T=1300 К.
- 2. Во сколько раз надо увеличить термодинамическую температуру черного тела, чтобы его энергетическая светимость R_3 возросла в два раза?
- 3. Определить относительное увеличение $\Delta R_3/R_3$ энергетической светимости черного тела при увеличении его температуры на 1%.
- 4. Температура T верхних слоев звезды Сириус равна 10 кК. Определить поток энергии $\Phi_{\rm e}$, излучаемый с поверхности площадью S=1 км 2 этой звезды.
- 5. Черное тело нагрели от температуры T_1 =600 К до T_2 =2400 К. Определить:1) во сколько раз увеличилась его энергетическая светимость; 2) как изменилась длина волны, соответствующая максимуму спектральной плотности энергетической светимости.
- 6. Определить установившуюся температуру T зачерненной металлической пластинки, расположенной перпендикулярно солнечным лучам вне земной атмосферы на среднем расстоянии от Земли до Солнца. Солнечная постоянная $C=1.4 \text{ к} \text{Дж/м}^2 \cdot \text{с}$.
- 7. Принимая коэффициент черноты $a_{\rm T}$ угля при температуре T=600 К равным 0,8, определить: 1) энергетическую светимость $R_{\rm 9}$ угля; 2) энергию W, излучаемую с поверхности угля площадью S =5 см 2 за время t =10 мин.
- 8. С поверхности сажи площадью $S=2~{\rm cm}^2$ при температуре $T=400~{\rm K}$ за время $t=5~{\rm muh}$ излучается энергия $W=83~{\rm Дж}$. Определить коэффициент черноты $a_{\rm T}$ сажи.
- 9. Муфельная печь потребляет мощность P=1 кВт. Температура T ее внутренней поверхности при открытом отверстии площадью S=25 см 2 равна 1200 К. Считая, что отверстие печи излучает как абсолютно черное тело, определить, какая часть ω мощности рассеивается стенками.
- 10. Абсолютно черное тело имеет температуру T_1 =500 К. Какова будет температура T_2 тела, если в результате поток излучения увеличится в n= 5 раз?
- 11. Максимум спектральной плотности энергетической светимости $(R_{\lambda,T})_{\text{max}}$ яркой звезды Арктур приходится на длину волны $\lambda_{\text{m}} = 580$ нм. Принимая, что звезда излучает как черное тело, определить температуру T поверхности звезды.
- 12. Определить температуру T черного тела, при которой максимум спектральной плотности энергетической светимости ($R_{\lambda,T}$)_{max} приходится на красную границу видимого спектра ($\lambda = 750$ нм); на фиолетовую ($\lambda_2 = 380$ нм).
- 13. Температура верхних слоев Солнца равна 5,8 кК. Считая Солнце черным телом, определить длину волны $\lambda_{\rm m}$, которой соответствует максимальная спектральная плотность излучательности $(r_{\lambda,\rm T})_{\rm max}$ Солнца.
- 14. На какую длину волны $\lambda_{\rm m}$ приходится максимум спектральной плотности энергетической светимости ($R_{\lambda, T}$)_{max} черного тела при температуре t = 0 C°?
- 15. Красная граница фотоэффекта для цинка λ_0 =310 нм. Определить максимальную кинетическую энергию $T_{\text{мах}}$ фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны λ =200 нм.

- 16. Вследствие изменения температуры абсолютно черного тела максимум спектральной плотности ($R_{\lambda,T}$)_{max} сместился с λ_1 =2,4 мкм на λ_2 = 0,8 мкм. Как и во сколько раз изменилась энергетическая светимость R_3 тела и максимальная спектральная плотность энергетической светимости?
- 17. При увеличении термодинамической температуры T черного тела в два раза длина волны $\lambda_{\rm m}$, на которую приходится максимум спектральной плотности энергетической светимости $(R_{\lambda,\rm T})_{\rm max}$, уменьшилась на $\Delta\lambda$ =400 нм. Определить начальную и конечную температуры T_1 и T_2 .
- 18. Эталон единицы силы света кандела представляет собой полный (излучающий волны всех длин) излучатель, поверхность которого площадь
- $S = 0,5305 \text{ мм}^2$ имеет температуру t затвердевания платины, равную 1063 °C. Определить мощность P излучателя.
- 19. Максимальная спектральная плотность энергетической светимости $(R_{\lambda,T})_{\text{max}}$ черного тела равна $4,16\cdot10^{11}$ Bт/м². На какую длину волны λ_{m} она проходится?
- 20. Температура черного тела равна 2 кК. Определить: 1) Спектральную плотность энергетической светимости ($r_{\lambda,T}$) для длины волны λ =600 нм; 2) Энергетическую светимость R_{λ} в интервале длин волн от λ_1 =590 нм до λ_2 = 610 нм. Принять, что средняя спектральная плотность энергетической светимости тела в этом интервале равна значению, найденному для волны λ = 600 нм.
- 21. Определить максимальную скорость ν_{max} фотоэлектронов, вылетающих из металла при облучении его γ фотонами с энергией ε =1,82 МэВ.
- 22. Максимальная скорость v_{max} фотоэлектронов, вылетающих из метала при облучении его γ -фотонами, равна 291 Мм/с. Определить энергию ϵ фотонов.
- 23. Определить максимальную скорость v_{max} фотоэлектронов, вылетающих из металла при облучении его γ фотонами с энергией ε = 1,53 МэВ.
- 24. Определить максимальную скорость v_{max} фотоэлектронов, вылетающих из металла под действием γ излучения с длиной волны λ =0,3нм.
- 25. Определить длину волны λ ультрафиолетового излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10^7 м/с. Работой выхода электронов из металла пренебречь.
- 26. На цинковую пластину падает монохроматический свет с длиной волны $\lambda = 220\,$ нм. Определить максимальную скорость $\nu_{\rm max}$ фотоэлектронов.
- 27. Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, нужно приложить задерживающую разность потенциалов $U_1 = 3,7$ В. Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6 В. Определить работу A выхода электронов с поверхности этой пластинки.
- 28. На поверхность лития падает монохроматический свет (λ =310 нм). Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода A.
- 29. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта λ_0 =307 нм и максимальная кинетическая энергия T_{max} фотоэлектрона равна 1 эВ?

- 30. Будет ли наблюдаться фотоэффект, если на поверхность серебра направить ультрафиолетовое излучение с длиной волны $\lambda = 300$ нм.
- 31. Определить энергию E, массу m и импульс p фотона, которому соответствует длина волны $\lambda = 380$ нм (фиолетовая граница видимого спектра).
- 32. Определить длину волны λ , массу m и импульс p фотона с энергией $\varepsilon = 1$ МэВ. Сравнить массу этого фотона с массой покоящегося электрона.
- 33. Определить длину волны λ фотона, импульс которого равен импульсу электрона, обладающего скоростью $V = 10^7$ м/с.
- 34. Определить длину волны λ фотона, масса которого равна массе покоя: 1) электрона; 2) протона.
- 35. Давление p монохроматического света (λ =600 нм) на черную поверхность расположенную перпендикулярно падающим лучам, равно 0,1 мкПа. Определить число N фотонов, падающих за время t=1 с на поверхность площадью S=1 см²
- 36. Спутник в форме шара движется вокруг Земли на такой высоте, что поглощением солнечного света в атмосфере можно пренебречь. Диаметр спутника d=40 м. Зная солнечную постоянную C=1,4 кДж/м²-с и принимая, что поверхность спутника полностью отражает свет, определить силу давления F солнечного света на спутник.
- 37. На зеркальце с идеально отражающей поверхностью площадью $S=1,5~{\rm cm}^2$ падает нормально свет от электрической дуги. Определить импульс p, полученный зеркальцем, если поверхностная плотность потока излучения φ , падающего на зеркальце, равна $0,1~{\rm MBT/m^2}$, продолжительность облучения $t=1~{\rm c}$. 38. Поток энергии $\Phi_{\rm e}$, излучаемый электрической лампой, равен 600 Вт. На расстоянии $r=1~{\rm m}$ от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром $d=2~{\rm cm}$. Принимая, что излучение лампы одинаково во всех направлениях и что зеркальце полностью отражает падающий на него свет, определить силу F светового давления на зеркальце.
- 39. Определить поверхностную плотность I потока энергии излучения, падающего на зеркальную поверхность, если световое давление p при перпендикулярном падении лучей равно 10 мкПа.
- 40. Определить энергетическую освещенность (облученность) $E_{\rm e}$ зеркальной поверхности, если давление, производимое излучением, p =40 мкПа. Излучение падает нормально к поверхности.
- 41. Рентгеновское излучение длиной волны λ =55,8 пм рассеивается плиткой графита (комптон-эффект). Определить длину волны λ' света, рассеянного под углом θ = 60° к направлению падающего пучка света.
- 42. Определить максимальное изменение длины волны при комптоновском рассеянии: 1) на свободных электронах; 2) на свободных протонах.
- 43. Определить угол θ рассеяния фотона, испытавшего соударение со свободным электроном, если изменение длины волны $\Delta\lambda$ при рассеянии равно 3,62 пм.

- 44. Фотон с энергией ε =0,4 МэВ рассеялся под углом θ = 90° на свободном электроне. Определить энергию ε' рассеянного фотона и кинетическую энергию T электрона отдачи.
- 45. Определить импульс p электрона отдачи при эффекте Комптона, если фотон с энергией, равной энергии покоя электрона, был рассеян на угол $\theta = 180^{\circ}$.
- 46. Какая доля энергии фотона при эффекте Комптона приходится на электрон отдачи, если фотон претерпел рассеяние на угол θ =180°? Энергия ε фотона до рассеяния равна 0,255 МэВ.
- 47. Фотон с энергией $\varepsilon = 0.25$ МэВ рассеялся на свободном электроне. Энергия ε рассеянного фотона равна 0,2 МэВ. Определить угол рассеяния θ .
- 48. Угол рассеяния θ фотона равен 90°. Угол отдачи φ электрона равен 30°. Определить энергию ε падающего фотона.
- 49. Фотон ($\lambda = 1$ пм) рассеялся на свободном электроне под углом $\theta = 90^\circ$. Какую долю своей энергии фотон передал электрону?
- 50. Длина волны λ фотона равна комптоновской длине волны λ_{κ} электрона. Определить энергию ε и импульс p фотона.
- 51.Вычислить радиусы r_2 и r_3 второй и третьей орбит в атоме водорода.
- 52. Определить скорость v электрона на второй орбите атома водорода.
- 53. Определить частоту обращения электрона на второй орбите атома водорода.
- 54. Определить потенциальную Π , кинетическую T и полную E энергии электрона, находящегося на первой орбите атома водорода.
- 55. Определить длину волны λ , соответствующую третьей спектральной линии в серии Бальмера.
- 56. Найти наибольшую λ_{max} и наименьшую λ_{min} длины волн в первой инфракрасной серии спектра водорода (серии Пашена).
- 57. Вычислить энергию ε фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на первый.
- 58. Определить наименьшую ε_{\min} и наибольшую ε_{\max} энергии фотона в ультрафиолетовой серии спектра водорода (серии Лаймана).
- 59. Атомарный водород, возбужденный светом определенной длины волны, при переходе в основное состояние испускает только три спектральные линии. Определить длины волн этих линий и указать, каким сериям они принадлежат.
- 60. Фотон с энергией $\varepsilon = 16,5$ эВ выбил электрон из невозбужденного атома водорода. Какую скорость υ будет иметь электрон вдали от ядра атома?

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики.— М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010\ \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Раздел 6. Элементы квантовой механики и ядерной физики.

Практическое занятие 16

Тема 16. Квантовая механика. Элементы современной физики атомов и молекул. Волны вещества. Свойства волн де - Бройля. Принцип неопределённости Гейзенберга. Волновая функция и её статистический смысл. Общее уравнение Шрёдингера. Уравнение Шрёдингера для стационарных состояний. Основные квантово-механические задачи.

Цель занятия: рассмотреть основные понятия и закономерности квантовой механики.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных понятий и закономерностей квантовой механики; умения – применять полученные знания при решении задач

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные понятия и закономерности квантовой механики в их взаимосвязи, формировать у студентов основ естественнонаучной картины мира.

Теоретический материал по теме

Длина волны де Бройля

 $\lambda = \frac{h}{p},$

где h – постоянная Планка, p – импульс частицы.

Соотношение неопределенностей Гейзенберга:

для координаты и импульса

$$\Delta x \cdot \Delta p_{x} \ge \hbar = \frac{h}{2\pi},$$

где Δx — неопределенность координаты частицы, Δp_x — неопределенность проекции импульса частицы на соответствующую координатную ось;

$$\Delta E \cdot \Delta t \ge \hbar = \frac{h}{2\pi} \,,$$

где ΔE — неопределенность энергии частицы в некотором состоянии, Δt — время нахождения частицы в этом состоянии \hbar — постоянная Дирака.

Плотность вероятности нахождения частицы

 $w = |\psi|^2$,

где ψ — волновая функция частицы.

Вероятность обнаружения частицы в координатном

интервале от x_1 до x_2

$$W = \int_{x_1}^{x_2} \left| \psi(x) \right|^2 dx.$$

Волновая функция, описывающая состояние частицы в бесконечно глубокой одномерной прямоугольной потенциальной яме (решение уравнения Шредингера)

$$\psi_{\rm n} = \sqrt{\frac{2}{l}} \sin \frac{n\pi x}{l},$$

где l — ширина ямы, x — координата частицы в яме (0 < x < l), n — квантовое число (n = 1, 2, 3, ...).

Энергия частицы в бесконечно глубокой

одномерной потенциальной яме

 $E_{\rm n} = \frac{h^2}{8ml^2}n^2,$

где m — масса частицы.

Примеры решения задач.

Задача 1. Кинетическая энергия движущегося протона в четыре раза меньше его энергии покоя. Вычислить дебройлевскую длину волны протона.

$$E_0 = 1,50 \cdot 10^{10}$$
 Дже $\lambda = ?$

Длина волны де Бройля λ определятся по формуле

$$T = E_0 / 4 \qquad \lambda = \frac{h}{p}, \qquad (1)$$

где h - постоянная Планка, p - импульс частицы.

По условию задачи кинетическая энергия протона сравнима с его энергией покоя E_0 , импульс p и кинетическая энергия T связаны

сравнима с его энергией покоя E_0 , импульс p и кинетическая энергия T связаны релятивистским соотношением:

$$p = \frac{1}{c} \sqrt{T(T + 2E_0)},\tag{2}$$

где c - скорость света в вакууме. Учитывая, что $T=E_0$ /4 из (2) и (1) найдем, что

$$\lambda = \frac{4}{3} \frac{hc}{E_0} = \frac{4 \cdot 6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{3 \cdot 1,5 \cdot 10^{-10}} = 1,77 \cdot 10^{-15} \,\mathrm{M}.$$

Задача 2. Масса движущегося электрона в три раза больше его массы покоя. Чему равна минимальная неопределенность координаты электрона.

Дано:
$$m = 3m_0$$
 Согласно соотношению неопределенности Гейзенберга:
$$\Delta x \cdot \Delta p_{\rm x} \geq \frac{h}{2\pi}, \qquad (1)$$
 где Δx и $\Delta p_{\rm x}$ неопределенности координаты и импульса

Согласно соотношению неопределенности Гейзенберга:

$$\Delta x \cdot \Delta p_{\rm x} \ge \frac{h}{2\pi}$$
, (1)

частицы, h — постоянная Планка.

Так как импульс $p = m\upsilon$, а $\Delta p = m\Delta\upsilon$, где m – масса, υ - скорость частицы, а её неопределенность $\Delta \upsilon_{\scriptscriptstyle x}$, не может превышать скорости света c в вакууме, то есть $\Delta v_{\rm x} = c$, из соотношения (1) получим:

$$\Delta x_{\min} = \frac{h}{2\pi mc} \,. \tag{2}$$

Согласно условию $m = 3m_0$, то окончательно получим

$$\Delta x_{\min} = \frac{h}{6\pi m_0 c} \tag{3}$$

Проведя вычисления, найдем

$$\Delta x_{\min} = \frac{6,62 \cdot 10^{-34}}{6 \cdot 3,14 \cdot 0,91 \cdot 10^{-30} \cdot 3 \cdot 10^{8}} = 1,28 \cdot 10^{-13} \,\mathrm{M}.$$

Задача 3. Среднее время жизни возбужденных состояний атома составляет 10 нс. Вычислить естественную ширину спектральной линии ($\lambda = 0.7$ мкм), соответствующую переходу между возбужденными уровнями атома. Дано:

$$au = 10 \text{ hc} = 10^{-8} \text{ c}$$
 При переходе электрона из одного стационарного состояния в другое излучается (или поглощается) энергия, равная:
$$\frac{hc}{a} = E_2 - E_1 \; , \tag{1}$$

где E_2 и E_1 - энергетические уровни атома, c – скорость света в вакууме, h – постоянная Планка.

Из выражения (1) получаем, что неопределенность длины волны $\Delta \lambda$ излучения связана с неопределенностью энергии уровней E_2 и E_1 атома соотношением:

$$\frac{hc}{\lambda^2}\Delta\lambda = \Delta E_2 + \Delta E_1 \tag{2}$$

Согласно соотношению неопределенности Гейзенберга:

$$\Delta E \cdot \Delta t \ge \frac{h}{2\pi},\tag{3}$$

где ΔE и Δt — соответственно неопределенности энергии и момента времени. При переходе атома из одного стационарного состояния в другое Δt не превышает среднее время жизни атома τ в возбужденнм состоянии, то есть, полагаем, что $\Delta t = \tau$. Тогда минимальная неопределенность энергии уровней,

согласно (3), равна: $\Delta E_{\min} = \frac{h}{2\pi\tau}$. Следовательно

$$\Delta E_{\min} = \Delta E_1 = \frac{h}{2\pi\tau_1} \quad \text{if} \quad \Delta E_{\min} = \Delta E_2 = \frac{h}{2\pi\tau_2}. \tag{4}$$

Из (2) с учетом (4) найдем минимальную неопределенность длины волны излучения, которая называется естественной шириной спектральной линии:

$$\Delta \lambda_{\min} = \frac{\lambda^2}{2\pi c} \left(\frac{1}{\tau_2} + \frac{1}{\tau_1} \right). \tag{5}$$

Для возбужденных состояний с одинаковым временем жизни $\tau_1 = \tau_2 = \tau$ имеем

$$\Delta \lambda_{\min} = \frac{\lambda^2}{\pi c \tau} = \frac{\left(7 \cdot 10^{-7}\right)^2}{3,14 \cdot 3 \cdot 10^8 \cdot 10^{-8}} = 5, 2 \cdot 10^{-14} \text{ M}.$$

Задача 4. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l на втором энергетическом уровне. В каких точках ямы плотность вероятности обнаружения частицы совпадает с классической плотностью вероятности. Дано:

l Волновая функция ψ , описывающая состояние частицы в бесконечно $w_{\rm x} = w_{\rm клас}$ глубокой одномерной потенциальной яме шириной l, имеет вид

$$\frac{n=2}{x=?} \qquad \psi_n = \sqrt{\frac{2}{l}} \sin \frac{n\pi x}{l}, \qquad (1)$$

x – координата частицы в яме $(0 \le x \le l)$.

Как известно квадрат модуля волновой функции дает w — плотность вероятности обнаружения частицы в точке с координатой x, то есть

$$\left|\psi\right|^2 = w. \tag{2}$$

Так как частица находится на втором энергетическом уровне (n=2), то

$$w_2 = \frac{2}{l}\sin^2\left(\frac{2\pi x}{l}\right). \tag{3}$$

В классической физике нет никаких ограничений для нахождения частицы в любом месте потенциальной ямы. Другими слова, плотность вероятности её местонахождения должна равномерно распределиться по всей ширине l ямы. Следовательно

$$W_{\text{клас}} = \frac{1}{I}.$$
 (4)

Приравнивая по условию задачи выражение (3) и (4), получим

$$\sin^2\left(\frac{2\pi x}{l}\right) = \frac{1}{2}.\tag{5}$$

Из решения уравнение (5), имеем $\frac{2\pi x}{l} = \frac{\pi}{4} \pm \frac{\pi}{2} k$, при k= 0,1,2,3... и

$$x = \frac{l}{4} \left(\frac{1}{2} \pm k \right), k = 0, 1, 2....$$
 (6)

В пределах ямы $(0 \le x \le l)$ таких точек четыре (значения x при отрицетельном k выходят за пределы ямы):

$$x = \left(\frac{l}{8}, \frac{3l}{8}, \frac{5l}{8}, \frac{7l}{8}\right).$$

Вопросы и задания:

Вопросы:

- 1. Корпускулярно-волновой дуализм свойств вещества.
- 34. Соотношение неопределенностей.
- 35. Описание микрочастиц с помощью волновой функции.
- 36. Уравнение Шредингера.
- 37. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».
 - 38. Туннельный эффект.
 - 39. Водородоподобный атом в квантовой механике.

Задачи для самостоятельного решения.

- 1. Альфа-частица находится в бесконечно глубокой одномерной потенциальной яме. Чему равна ширина ямы, если минимальная энергия частицы составляет 6 МэВ?
- 2. Электрон находится в бесконечно глубокой одномерной потенциальной яме шириной 0,1 нм. Вычислить длину волны излучения при переходе электрона со второго на первый энергетический уровень.
- 3. Протон находится в бесконечно глубокой одномерной потенциальной яме шириной 0,01 пм. Вычислить длину волны излучения при переходе протона с третьего на второй энергетический уровень.
- 4. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l в основном состоянии. В каких точках ямы плотность вероятности обнаружения частицы совпадает с классической плотностью вероятности?
- 5. Частица находится в бесконечно глубокой одномерной потенциальной яме

- шириной l в основном состоянии. Чему равно отношение плотности вероятности обнаружения частицы в центре ямы к классической плотности вероятности?
- 6. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l в первом возбужденном состоянии. В каких точках ямы плотность вероятности обнаружения частицы максимальна, а в каких минимальна?
- 7. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l на втором энергетическом уровне. Определить вероятность обнаружения частицы в пределах от 0 до l/3.
- 8. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l в основном состоянии. Найти отношение вероятностей нахождения частицы в пределах от 0 до l /3 и от l /3 до 2l /3.
- 9. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l. Вычислить отношение вероятностей нахождения частицы в пределах от 0 до l/4 для первого и второго энергетических уровней.
- 10. Частица в бесконечно глубокой, одномерной прямоугольной потенциальной яме шириной l находится в возбужденном состоянии (n=3). Определить, в каких точках ямы плотность вероятности нахождения частицы, имеет максимальное и минимальное значения.

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2010 \, \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

Практическое занятие 17

Тема 17: Основы физики атомного ядра. Элементарные частицы. Квантовые числа. Спин электрона. Принцип неразличимости тождественных частиц Молекулярные спектры. Поглощение, спонтанное и вынужденное излучение. Вырожденный электронный газ в металлах. Элементы квантовой статистики. Бозоны и фермионы. Принцип Паули. Периодическая система элементов. Молекулы: химические связи, понятие об энергетических уровнях. теплоёмкости. квантовой теории Квантовая электропроводности. Состав, заряд атомного ядра. Массовое и зарядовое числа. Дефект массы и энергия связи ядра. Спин ядра и его магнитный момент. Ядерные силы, их свойства, модели ядра. Закон радиоактивного распада. Правила смещения. Закономерности ά распада. β- распад. Нейтрино. Гамма излучение и его свойства. Эффект Мёссбауэра. Методы наблюдений и регистраций радиоактивных излучений. Ядерные реакции. Элементарные частицы. Космическое излучение. Классификация элементарных частиц. Физическая картина мира.

Цель занятия: рассмотреть основные понятия и закономерности современной физики атомов и молекул и основы физики атомного ядра.

Знания и умения, приобретаемые студентом в результате освоения темы, формируемые компетенции:

знания - основных понятий и закономерностей современной физики атомов и молекул и основы физики атомного ядра;

умения – применять полученные знания при решении задач

Актуальность темы занятия: данная тема является весьма актуальной, так как позволяет изучать основные понятия и закономерности современной физики атомов и молекул и основы физики атомного ядра в их взаимосвязи, формировать у студентов основ естественнонаучной картины мира.

Теоретический материал по теме

Дефект массы ядра

$$\Delta m = Zm_{\rm n} + (A - Z)m_{\rm n} - m_{\rm g},$$

где m_p – масса протона, m_{π} – масса нейтрона, m_{π} – масса ядра атома $_Z^A X$; Z и A – зарядовое и массовое числа.

Энергия связи ядра

 $E_{\rm cb} = c^2 \Delta m$,

где c — скорость света в вакууме.

Удельная энергия связи

$$\varepsilon_{_{\mathrm{CB}}} = \frac{E_{CB}}{A}.$$

Закон радиоактивного распада

 $N = N_0 \exp(-\lambda t)$,

где N_0 — начальное число радиоактивных ядер в момент времени t=0, N — число нераспавшихся радиоактивных ядер в момент времени t, λ — постоянная радиоактивного распада.

Активностьрадиоактивного вещества

$$A = -\frac{dN}{dt} = \lambda N.$$

Закон поглощения гамма-излучения веществом

 $I = I_0 \exp(-\mu x),$

где I_0 — интенсивность гамма-излучений на входе в поглощающий слой вещества, I — интенсивность гамма-излучений после прохождения поглощающего слоя вещества толщиной x, μ — линейный коэффициент поглощения.

Энергия ядерной реакции

$$Q = c^2 (m_1 + m_2 - \sum m_i'),$$

где m_1 и m_2 — массы покоя частиц, вступающих в реакцию, $\sum m_i$ - сумма масс покоя частиц, образовавшихся в результате реакций.

Примеры решения задач.

Задача 1. При определении периода полураспада $T_{1/2}$ радиоактивного короткоживущего изотопа использован счетчик импульсов. За время t=1мин в начале наблюдения (t=0) было насчитано $\Delta n_1=250$ импульсов, а в конце наблюдения (t=1ч) насчитано $\Delta n_2=92$ импульса в минуту. Определить постоянную радиоактивного распада λ и период полураспада $T_{1/2}$ изотопа.

Дано:			
<i>t</i> =1ч	Число импульсов Δn , регистрируемых счетчиком за вре	мя Δt ,	
$\Delta n_1 = 250$	пропорционально числу распавшихся атомов радиоакт	ивного изотопа	1
$\Delta n_2 = 92$	ΔN . Таким образом, при первом измерении		
λ =?	$\Delta n_1 = k \cdot \Delta N_1 = k \cdot N_1 \cdot \left(1 - e^{-\lambda \Delta t}\right) ,$	(1))
$T_{1/2}=?$	где N_1 – количество атомов изтопа в момент первого	измерения;	

k — коэффициент пропорциональности, постоянный для данного прибора в данном его положении относительно изотопа.

При втором измерении

$$\Delta n_2 = k \cdot N_2 \left(1 - e^{-\lambda \, \Delta t} \right) \,, \tag{2}$$

где N_2 – количество атомов радиоактивного элемента при втором измерении.

Разделив (1) на (2) и учитывая, что Δt в обоих случаях одинаково, а также, что N_1 и N_2 связаны соотношением:

$$N_2 = N_1 \cdot e^{-\lambda t},$$

$$\frac{\Delta n_1}{\Delta n_2} = e^{\lambda t},$$
(3)

получим

где t – время между первым и вторым измерением.

Логарифмируя (3) получим $\ln \frac{\Delta n_1}{\Delta n_2} = \lambda t$. Следовательно

$$\lambda = \frac{1}{t} \ln \frac{n_1}{n_2} = \frac{1}{1} \cdot \ln \frac{250^{-1}}{92} 1 \,\mathrm{y}^{-1}.$$

Период полураспада связан с постоянной радиоактивного распада λ соотношением $T = \frac{\ln 2}{\lambda}$. $T = \frac{\ln 2}{1} = 0,693$ ч = 41,5 мин.

Задача 2. Вычислить дефект массы и энергию связи ядра атома $^{11}_{5}B$.

Дано:
 Дано:
 Дефект массы ядра определим по формуле
 $\Delta m = Z \cdot m_{\rm p} + (A - Z) \cdot m_{\rm n} - m_{\rm g}$
 Дефект массы ядра определим по формуле
 $\Delta m = Z \cdot m_{\rm p} + (A - Z) \cdot m_{\rm n} - m_{\rm g}$
 Вычисление произведем в а.е.м. Для $_5^{11}B$: Z=5, A=11.
 Остальные значения найдем из таблиц, $m_p=1,00783$ а.е.м., $m_n=1,00867$ а.е.м., $m_g=11,00931$ а.е.м.

Тогда $\Delta m = 5 \cdot 1.00783 + (11 - 5) \cdot 1,00867 - 11,00931 = 0,08186$ а. е. м. Энергия связи ядра определяется соотношением

$$E_{\rm CB} = \Delta m \cdot c^2$$
.

Ее также найдем во внесистемных единицах (МэВ). При этом вместо c^2 используют коэффициент пропорциональности $931 \frac{\text{МэВ}}{\text{а е м}}$:

$$E_{\rm CB} = 931 \cdot 0,08186 = 76,2 \,\mathrm{M}{\circ}\mathrm{B}.$$

Вопросы и задания:

Вопросы:

- 1. Состав ядра.
- 2. Энергия связи ядер.

- 3. Ядерные силы.
- 4. Магнитные и электрические свойства ядер.
- 5. Ядерные модели.
- 6. Радиоактивный распад и законы сохранения.
- 7. Прохождения заряженных частиц и гамма-излучения через вещество.
- 8. Ядерные реакции. Физические основы ядерной энергетики.
- 9. Элементарные частицы.
- 10. Современная физическая картина мира

Задачи для самостоятельного решения

- 1. Зная постоянную Авогадро N_A , определить массу m_a нейтрального атома углерода ^{12}C и массу m, соответствующую углеродной единице массы.
- 2. Чем отличается массовое число от относительной массы ядра?
- 3. Хлор представляет собой смесь двух изотопов с относительными атомными массами $A_{\rm rl}$ =34,969 и $A_{\rm r2}$ =36,966. Вычислить относительную атомную массу $A_{\rm r}$ хлора, если массовые доли w_1 и w_2 первого и второго изотопов соответственно равны 0,754 и 0,246.
- 4. Бор представляет собой смесь двух изотопов с относительными атомными массами $A_{\rm rl}$ =10,013 и $A_{\rm r2}$ =11,009. Определить массовые доли w_1 и w_2 первого и второго изотопов в естественном боре. Относительная атомная масса $A_{\rm r}$ бора равна 10,811.
- 5. Какую часть массы нейтрального атома плутония составляет масса его электронной оболочки?
- 6. Определить массу ядра лития, если масса нейтрального атома лития равна 7,01601 а.е.м.
- 7. Укажите, сколько нуклонов, протонов, нейтронов содержат следующие ядра:
- 1) ${}_{2}^{3}He$; 2) ${}_{5}^{10}B$; 3) ${}_{11}^{23}Na$; 4) ${}_{26}^{54}Fe$; 5) ${}_{47}^{104}Ag$; 6) ${}_{92}^{238}U$.
- 8. Напишите символические обозначения ядер изотопов водорода и назовите их.
- 9. Укажите, сколько существует изобар с массовым числом A=3. Напишите символические обозначения ядер.
- 10. Какие изотопы содержат два нейтрона? (Дать символическую запись ядер.)
- 11. Определить дефект массы Δm и энергию связи $E_{\rm cB}$ ядра атома тяжелого водорода.
- 12. Определить энергию E_{cs} , которая освободится при соединении одного протона и двух нейтронов в атомное ядро.
- 13. Определить удельную энергию связи E ядра ${}^{12}_{6}C$.
- 14. Энергия связи E_{cB} ядра, состоящего из двух протонов и одного нейтрона, равна 7,72 МэВ. Определить массу m_a нейтрального атома, имеющего это ядро.
- 15. Определить массу m_a нейтрального атома, если ядро этого атома состоит из трех протонов и двух нейтронов и энергия связи E_{cs} ядра равна 26,3 МэВ.

- 16. Атомное ядро, поглотившее γ -фотон (λ =0,47 пм), пришло в возбужденное состояние и распалось на отдельные нуклоны, разлетевшиеся в разные стороны. Суммарная кинетическая энергия T нуклонов равна 0,4 МэВ. Определить энергию связи E_{cs} ядра.
- 17. Какую наименьшую энергию E нужно затратить, чтобы разделить на отдельные нуклоны ядра ${}_{3}^{7}Li$ и ${}_{4}^{7}Be$? Почему для ядра берилия эта энергия меньше, чем для ядра лития?
- 18. Определить энергию E, которая выделится при образовании из протонов и нейтронов ядер гелия ${}_{2}^{4}He$ массой m=1 г.
- 19. Какую наименьшую энергию E нужно затратить, чтобы оторвать один нейтрон от ядра азота ${}^{14}_{7}N$?
- 20. Найти минимальную энергию E, необходимую для удаления одного протона из ядра азота $^{14}_{7}N$.

Рекомендуемая литература:

Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2012 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, 2010 г.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2010 г.

Дополнительная литература:

- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2008 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2005 г.

СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО ФИЗИКЕ

1. Основные физические постоянные (округленные значения)

1. Основные физилес	RHC HOCTOMINDIC	(округленные значения)
Физическая постоянная	Обозначение	Значение
Ускорение свободного		
падения	g	9.81 m/c^2
Гравитационная постоянная	G	$6,67 \cdot 10^{-11} \mathrm{m}^3/(\mathrm{Kr} \cdot \mathrm{c}^2)$
Постоянная Авогадро	N_A	$6,02 \cdot 10^{23}$ моль $^{-1}$
Универсальная газовая		
постоянная	R	8,31 Дж/(моль·К)
Молярный объем*	V_m	$22,4\cdot10^{-3}\mathrm{M}^3/\mathrm{МОЛЬ}$
Постоянная Больцмана	k	1,38⋅10-23 Дж/К
Элементарный заряд	e	1,60·10 ⁻¹⁹ Кл
Скорость света в вакууме	c	$3,00\cdot10^{8} \text{ m/c}$
Постоянная Стефана-		
Больцмана	σ	$5,67 \cdot 10^{-8} \text{ BT/}(\text{M}^2 \cdot \text{K}^4)$
Постоянная закона		
смещения Вина	b	2,90·10 ⁻³ м·К
Постоянная Планка	h	6,63·10 ⁻³⁴ Дж·с
Постоянная Дирака	\hbar	1,05·10 ⁻³⁴ Дж·с
Постоянная Ридберга	R	$1,10\cdot10^7 \text{ m}^{-1}$
Первый боровский радиус	a	$0,529 \cdot 10^{-10} \text{ M}$
Комптоновская длина волны	λ	2,43·10 ⁻¹² м
Магнетон Бора	μ_B	$0.927 \cdot 10^{-23} \text{ A} \cdot \text{m}^2$
Энергия ионизации атома	L.D	
водорода	E_i	2,18·10-18 Дж (13,6 эВ)
Атомная единица массы	а.е.м.	1,660-10-27 кг
Электрическая постоянная	$arepsilon_0$	$8,85\cdot10^{-12} \Phi/M$
Магнитная постоянная	μ_0	$4\pi \cdot 10^{-7} \Gamma_{\text{H/M}}$
	, -	

^{*}Молярный объем идеального газа при нормальных условиях.

2. Некоторые астрономические величины

Наименование	Значение
Радиус Земли	6,37·10 ⁶ м
Масса Земли	5,98·10 ²⁴ кг
Радиус Солнца	6,95·10 ⁸ м
Масса Солнца	1,98·10 ³⁰ кг
Радиус Луны	$1,74 \cdot 10^6 \text{ M}$
Масса Луны	$7,33 \cdot 10^{22}$ кг
Расстояние от центра Земли до центра Солнца	1,49·10 ¹¹ м
Расстояние от центра Земли до центра Луны	$3,84 \cdot 10^8 \text{ M}$

3. Плотность твердых тел

Твердое тело	Плотность, $\kappa \Gamma/M^3$	Твердое тело	Плотность, кг/м ³
Алюминий	$2,70\cdot10^3$	Медь	$8,93 \cdot 10^3$
Барий	$3,50\cdot10^3$	Никель	$8,90 \cdot 10^3$
Ванадий	$6,02\cdot10^3$	Свинец	$11,3\cdot 10^3$
Висмут	$9,80\cdot10^{3}$	Серебро	$10,5 \cdot 10^3$
Железо	$7,88\cdot10^3$	Цезий	$1,90\cdot10^3$
Литий	$0,53 \cdot 10^3$	Цинк	$7,15\cdot10^3$

4. Плотность жидкостей

Жидкость	Плотность, $\kappa \Gamma/m^3$	Жидкость	Плотность, кг/м ³
Вода (при 4 °C)	$1,00\cdot10^3$	Сероуглерод	$1,26\cdot10^3$
Глицерин	$1,26\cdot10^3$	Спирт	$0.80 \cdot 10^3$
Ртуть	$13,6\cdot10^3$		

5. Плотность газов (при нормальных условиях)

Газ	Плотность, $\kappa \Gamma/M^3$	Газ	Плотность, $\kappa \Gamma / M^3$
Водород	0,09	Гелий	0,18
Воздух	1,29	Кислород	1,43

6. Коэффициент поверхностного натяжения жидкостей

Жидкость	Коэффициент, мН/м	Жидкость	Коэффициент, мН/м
Вода	72	Ртуть	500
Мыльная пена	40	Спирт	22

7. Эффективный диаметр молекулы

Газ	Диаметр, м	Газ	Диаметр, м
Азот	3,0.10-10	Гелий	1,9·10 ⁻¹⁰
Водород	$2,3\cdot 10^{-10}$	Кислород	$2,7 \cdot 10^{-10}$

8. Диэлектрическая проницаемость

Вещество	Проницаемость	Вещество	Проницаемость
Вода	81	Стекло	7,0
Масло		Слюда	7,0
трансформаторное	2,2	Фарфор	5,0
Парафин	2,0	Эбонит	3,0

9. Удельное сопротивление металлов

	Удельное		Удельное
Металл	сопротивление,	Металл	сопротивление,
	Ом·м		Ом·м
Железо	9,8·10 ⁻⁸	Нихром	1,1·10 ⁻⁶
Медь	$1,7 \cdot 10^{-8}$	Серебро	$1,6 \cdot 10^{-8}$

10. Энергия ионизации

Вещество	Е _і , Дж	E_{i} , эВ
Водород	2,18·10 ⁻¹⁸	13,6
Гелий	$3,94 \cdot 10^{-18}$	24,6
Литий	1,21·10 ⁻¹⁷	75,6
Ртуть	1,66·10 ⁻¹⁸	10,4

11. Подвижность ионов в газах, $M^2/(B \cdot c)$

Газ	Положительные ионы	Отрицательные ионы
Азот	1,27·10 ⁻⁴	1,81·10 ⁻⁴
Водород	5,4·10-4	$7,4\cdot 10^{-4}$
Воздух	$1,4\cdot 10^{-4}$	$1,9 \cdot 10^{-4}$

12.Показатель преломления

Вещество	Показатель	Вещество	Показатель
Алмаз	2,42	Глицерин	1,47
Вода	1,33	Стекло	1,50
Масло	1,6	Сероуглерод	1,63
коричное			

13. Работа выхода электронов

Металл	А, Дж	А, эВ
Калий	$3,5 \cdot 10^{-19}$	2,2
Литий	$3,7 \cdot 10^{-19}$	2,3
Платина	$10 \cdot 10^{-19}$	6,3
Рубидий	$3,4\cdot 10^{-19}$	2,1
Серебро	$7,5 \cdot 10^{-19}$	4,7
Цезий	$3,2 \cdot 10^{-19}$	2,0
Цинк	$6,4\cdot 10^{-19}$	4,0

14.Относительные атомные массы (округленные значения) ${\bf A_r}$ и порядковые номера ${\bf Z}$ некоторых элементов

Элемент	Символ	A_{r}	Z	Элемент	Символ	A_{r}	Z
Азот	N	14	7	Марганец	Mn	55	25
Алюминий	Al	27	13	Медь	Cu	64	29
Аргон	Ar	40	18	Молибден	Mo	96	42
Барий	Ba	137	56	Натрий	Na	23	11
Ванадий	V	60	23	Неон	Ne	20	10
Водород	Н	1	1	Никель	Ni	59	28
Вольфрам	W	184	74	Олово	Sn	119	50
Гелий	He	4	2	Платина	Pt	195	78
Железо	Fe	56	26	Ртуть	Hg	201	80
Золото	Au	197	79	Cepa	S	32	16
Калий	K	39	19	Серебро	Ag	108	47
Кальций	Ca	40	20	Углерод	C	12	6
Кислород	О	16	8	Уран	U	238	92
Магний	Mg	24	12	Хлор	Cl	35	17

15. Масса и энергия покоя некоторых частиц

Частица		i_0	E_0		
Тастица	КГ	а.е.м.	Дж	МэВ	
Электрон	$9,11\cdot10^{-31}$	0,00055	8,16·10 ⁻¹⁴	0,511	
Протон	$1,672 \cdot 10^{-27}$	1,00728	$1,50 \cdot 10^{-10}$	938	
Нейтрон	$1,675 \cdot 10^{-27}$	1,00867	$1,51\cdot 10^{-10}$	939	
Дейтрон	$3,35\cdot10^{-27}$	2,01355	$3,00\cdot 10^{-10}$	1876	
α-частица	$6,64\cdot10^{-27}$	4,00149	$5,96 \cdot 10^{-10}$	3733	
Нейтральный					
π-мезон	$2,41\cdot10^{-28}$	0,14498	2,16·10 ⁻¹¹	135	

16. Периоды полураспада радиоактивных изотопов

Изотоп	Символ	Период полураспада
Актиний	$^{225}_{89}Ac$	10 сут.
Йод	$^{131}_{53}I$	8 сут.
Кобальт	$_{27}^{60}Co$	5,3 г
Магний	$^{27}_{12}Mg$	10 мин
Радий	$^{226}_{86}Ra$	1620 лет
Радон	$^{222}_{86}Rn$	3,8 сут.
Стронций	$^{90}_{38}Sr$	27 лет
Фосфор	$^{32}_{15}P$	14,3 сут.
Церий	$^{144}_{58}Ce$	285 сут.

17. Массы атомов легких изотопов

Изотоп	Символ	Масса, а.е.м.	Изотоп	Символ	Масса, а.е.м.
Нейтрон	1_0n	1,00867	Бор	59B 10B 5B 111B	9,01333 10,01294 11,00931
Водород	¹ ₁ H ² ₁ H ³ ₁ H	1,00783 2,01410 3,01605	Углерод	10 C 12 C 13 C 14 C	10,00168 12,00000 13,00335 14,00324
Гелий	$_{2}^{3}He$ $_{2}^{4}H$	3,01603 4,0026	Азот	$^{14}_{7}N$	14,00307
Литий	$_{3}^{6}L$ $_{3}^{7}Li$	6,01513 7,01601	Кислород	16 80 17 8	15,99491 16,99913
Бериллий	⁷ ₄ Be ⁹ ₄ Be ¹⁰ ₄ Be	7,01693 9,01219 10,01354	Фтор	¹⁹ ₉ F	18,99840

18. Тепловые свойства веществ.

ТВЕРДЫЕ ТЕЛА

Вещество	Удельная теплоемкость, кДж /(кг К)	Температура плавления, ⁰ С	Удельная теплота плавления, кДж/кг
Алюминий	0,88	600	380
Лед	2,1	0	330
Медь	0,38	1083	180
Олово	0,23	232	59
Свинец	0,13	327	25
Серебро	0,23	960	87

жидкости

Вещество	Удельная теплоемкость, кДж/(кг К)	Температура кипения, °С	Удельная теплота парообразования, МДж/кг
Вода	4,2	100	2,3
Ртуть	0,12	357	0,29
Спирт	2,4	78	0,85

ГАЗЫ

	Удельная	Температура
Вещество	теплоемкость,	конденсации,
	кДж/(кг К)	°C
Азот	1,0	-196
Водород	14	-252
Воздух	1,0	-
Кислород	0,92	-183

СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО МАТЕМАТИКЕ

Корни квадратного уравнения $ax^2 + bx + c = 0$:			
$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
$x_{1,2} =$			
Теорем	па Виета:		
$x_1 + x_2 = -\frac{1}{2}$	$\frac{b}{c}$, $x_1 x_2 = \frac{c}{c}$.		
	$a^{-1/2}$ a		
$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\sin(\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \cos \alpha \sin \beta$		
$\cos \alpha$	$\cos(\alpha \pm \beta) = \cos\alpha \cdot \cos\beta \mp \sin\alpha \sin\beta$		
$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$	$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$		
$\sin^2 \alpha + \cos^2 \alpha = 1$	$1 \mp \operatorname{tg} \alpha \cdot \operatorname{tg} \beta$		
$\sec^2 \alpha - \operatorname{tg}^2 \alpha = 1$	$\operatorname{ctg}(\alpha \pm \beta) = \frac{\operatorname{ctg}\alpha \cdot \operatorname{ctg}\beta \mp 1}{\operatorname{ctg}\beta \pm \operatorname{ctg}\alpha}$		
$\csc^2 \alpha - \cot g^2 \alpha = 1$	$\operatorname{ctg}\beta\pm\operatorname{ctg}\alpha$		
$tg\alpha \cdot ctg\alpha = 1$	$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$		
$\sin \alpha \cdot \csc \alpha = 1$	$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$		
$\cos \alpha \cdot \sec \alpha = 1$			
$\sin \alpha = 1/\sqrt{1 + \operatorname{ctg}^2 \alpha}$	$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$		
$\cos \alpha = 1/\sqrt{1 + tg^2 \alpha}$	$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$		
$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$			
$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$		
$tg \ 2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$	$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$		
$\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^2 \alpha - 1}{2\operatorname{ctg} \alpha}$	$-\sin(\alpha \pm \beta)$		
$2\operatorname{ctg} 2\alpha = 2\operatorname{ctg} \alpha$	$\operatorname{tg} \alpha \mp \operatorname{tg} \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta}.$		
$\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$			
2	$2\sin\alpha\cdot\sin\beta = \cos(\alpha-\beta) - \cos(\alpha+\beta)$		
$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$	$2\cos\alpha\cdot\cos\beta = \cos(\alpha-\beta) + \cos(\alpha+\beta)$		
	$2\sin\alpha\cdot\cos\beta = \sin(\alpha-\beta) + \sin(\alpha+\beta)$		
$\sin^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{2}$			
$\cos^2\frac{\alpha}{2} = \frac{1 + \cos\alpha}{2}$			
$\operatorname{sh}\alpha = (\mathrm{e}^{\alpha} - \mathrm{e}^{-\alpha})/2$	$th\alpha = (e^{\alpha} - e^{-\alpha})/(e^{\alpha} + e^{-\alpha})$		
$\cosh\alpha = (e^{\alpha} + e^{-\alpha})/2$	$cth\alpha = (e^{\alpha} + e^{-\alpha})/(e^{\alpha} - e^{-\alpha})$		
	1		

Свойства тригонометрических функций.

$\sin(-x) = -\sin x,$	$\sin(x+2\pi k) = \sin x,$	
$\cos(-x) = \cos x,$	$\cos(x+2\pi k)=\cos x,$	
tg(-x) = -tg x,	$\operatorname{tg}\left(x+2\pi k\right)=\operatorname{tg}x,$	
$\operatorname{ctg}\left(-x\right) = -\operatorname{ctg}x,$	$\operatorname{ctg}(x+2\pi k) = \operatorname{ctg} x,$	
где k — любое целое число.		

Таблица значений тригонометрических функций некоторых углов.

Функция	Аргумент $lpha$							
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	0	_	
$\operatorname{ctg} \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	-	0	

Примечание: Связь между градусной и радианной мерами измерения угла:

Теорема синусов: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$, где a,b,c – длины сторон треугольника.

Теорема косинусов: $a^2 = b^2 + c^2 - 2bc \cos \alpha$.

Уравнение прямой: Ax + Bx + C = 0, где A,B,C – любые вещественные числа, $A^2 + B^2 \neq 0$.

y = kx + b — уравнение прямой с угловым коэффициентом k.

Каноническое уравнение эллипса: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, где a,b – полуоси.

Разложение на множители: $a^2 - b^2 = (a - b)(a + b), \qquad (a \pm b)^2 = a^2 \pm 2ab + b^2, \\ a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2), \qquad (a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$

Таблица производных

Функция	Производная	Функция	Производная
$1/x$ $-1/x^2$		$\sin x$	$\cos x$
\sqrt{x}	$1/(2\sqrt{x})$	$\cos x$	$-\sin x$
x^n	nx^{n-1}	tg x	$1/\cos^2 x$
		$\operatorname{ctg} x$	$-1/\sin^2 x$
e^{nx}	ne^{nx}	arcsin x	$1/\sqrt{1-x^2}$
a^{x}	$a^x \ln a$	arccos x	$-1/\sqrt{1-x^2}$
$\ln x$	1/x	arctg x	$1/(1+x^2)$
u(x)	$\frac{\upsilon u' - \upsilon' u}{\upsilon^2}$	arcctg x	$-1/(1+x^2)$
$\frac{u(x)}{v(x)}$	υ^2	arcetg x	1/(1 + x)
иυ	$\upsilon u' - \upsilon' u$		

Таблица интегралов.

$$\int x^n dx = \frac{x^{n+1}}{n+1}, n \neq 1$$

$$\int a^x dx = \frac{a^x}{\ln a}$$

$$\int \frac{dx}{\sin^2 x} = -\cot x$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int \cot x dx = \ln|\cos x|$$

$$\int \frac{dx}{\sin^2 x} = \ln \left| \frac{x-a}{x+a} \right|$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right|$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x-a} \right|$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x+a}{x-a} \right|$$

$$\int \frac{dx}{\sin^2 x} = \ln \left| \frac{x}{x} \right|$$

$$\int \frac{dx}{\sin^2 x} = \ln \left| \frac{x}{x} \right|$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x+a}{x-a} \right|$$

$$\int \frac{dx}{x^2 - a^2} = \arcsin x$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin x$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin x$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin x$$

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \ln(x + \sqrt{x^2 - 1})$$

$$\int \frac{dx}{\sqrt{x^2 + 1}} = \ln \left| x + \sqrt{x^2 + 1} \right|$$

$$\int e^x dx = e^x$$

$$\int \frac{x}{a} \frac{x}{a} dx = \frac{\pi^2}{6}$$

$$\int \frac{x^2}{a} \frac{x}{a} dx = \frac{\pi^4}{15}$$

$$\int u dv = u \cdot v - \int v du$$

Некоторые постоянные числа и приближенные формулы.

Постоянные числа	Приближенные формулы (при $\alpha << 1$)
$\pi = 3{,}141$	$(1\pm\alpha)^n\approx 1\pm n\alpha$
$\pi^2 = 9.8696$	$e^{\alpha} \approx 1 + \alpha$
$\sqrt{\pi} = 1,7725$	$ln(1+\alpha) \approx \alpha$
e = 2,7183	$\sin \alpha \approx \alpha$
$\lg e = 0,4343$	$\cos \alpha \approx 1 - \alpha^2 / 2$
$\ln 10 = 2,3026$	$\operatorname{tg} \alpha \approx \alpha$

Некоторые сведения о векторах.

Скалярное произведение векторов:

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

Векторное произведение векторов:

$$\vec{a} \cdot \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = (a_y b_z - a_z b_y) \vec{i} + (a_z b_x - a_x b_z) \vec{j} + (a_x b_y - a_y b_x) \vec{k}$$

$$\vec{a} \left[\vec{b} \ \vec{c} \right] = \vec{b} \left[\vec{c} \ \vec{a} \right] = \vec{c} \left[\vec{a} \ \vec{b} \right]$$

$$[\vec{a}[\vec{b}\ \vec{c}\,]] = \vec{b}(\vec{a}\cdot\vec{c}) - \vec{c}(\vec{a}\cdot\vec{b})$$

$$\frac{d}{dt}(\vec{a} + \vec{b}) = \frac{d\vec{a}}{dt} + \frac{d\vec{b}}{dt}$$
$$\frac{d}{dt}(\alpha \vec{a}) = \frac{d\alpha}{dt}\vec{a} + \alpha \frac{d\vec{a}}{dt}$$

$$\frac{d}{dt}(\vec{a}\,\vec{b}) = \frac{d\vec{a}}{dt}\vec{b} + \vec{a}\frac{d\vec{b}}{dt}$$

$$\frac{d}{dt}[\vec{a}\,\vec{b}] = \left[\frac{d\vec{a}}{dt}\vec{b}\right] + \left[\vec{a}\,\frac{d\vec{b}}{dt}\right]$$

Учебно - методическое и информационное обеспечение дисциплины: Основная литература:

- 1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2015 г.
- 2. Трофимова Т.И. , Павлова З.Г. Сборник задач по курсу физики с решениями. Учебное пособие для вузов 4-е издание, М., Высшая школа, $2015\ \Gamma$.
- 3. Чертов А.Г. Задачник по физике. М., Высшая школа, 2014 г Дополнительная литература:
- 1. Д.В.Сивухин. Общий курс физики. М.: ФИЗМАТЛИТ. 2014 г.
- 2. Грабовский Р.И. Курс физики. СПб, 2014 г.

Программное обеспечение и интернет ресурсы.

http://physics.nad.ru – физика в анимациях.