Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Шебзухова Татьяна Алуманичетерство науки и высшего образования Российской Федерации Должность: Директор Пятифоскера институт обущарь твенное завтономное образовательное учреждение федерального университета

высшего образования Дата подписания: 13.06.2024 15:51:50

«Северо-Кавказский федеральный университет» Уникальный программный ключ:

Уникальный программный ключ: Пятигорский институт (филиал) СКФУ d74ce93cd40e39275c3ba2f58486412a1c8ef96f Колледж Пятигорского института (филиал) СКФУ

УТВЕРЖДАЮ

Директор Пятигорского института (филиал) СКФУ Т.А. Шебзухова

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

По профессиональному модулю ПМ.02. Проектирование управляющих программ

компьютерных систем и комплексов

Специальность 09.02.0 «Компьютерные системы и комплексы»

Форма обучения <u>очная</u> Фонд оценочных средств по профессиональному модулю ПМ.02. Проектирование управляющих программ компьютерных систем и комплексов разработан на основании федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.07 «Информационные системы и программирование»

Разработчик: преподаватель, Темирбулатова Хаджият Ахматовна

СОГЛАСОВАНО:

Представитель работодателя

Зам. Генерального директора
ООО «Миллениум - Сервис»
Давыдов А.А.

должность представителя работодателя, наименование организации и город ее расположения
Фамилия, инициалы

М.Π.

1. Паспорт фонда оценочных средств

1.1. Область применения

Фонд оценочных средств (далее - ФОС) предназначен для проверки результатов освоения вида деятельности (ВД) ПМ.02. Проектирование управляющих программ компьютерных систем и комплексов и составляющих его профессиональных и общих компетенций, образовательной программы СПО по специальности 09.02.01 «Компьютерные системы и комплексы».

ФОС разработан на основании ФГОС, образовательной программы СПО и рабочей программы профессионального модуля (далее - ПМ).

1.2. Планируемые результаты освоения профессионального модуля

Результатом освоения ПМ является готовность обучающегося к выполнению вида профессиональной деятельности (в соответствии с рабочей программой ПМ) и сформированность профессиональных и общих компетенций.

Формой аттестации по ПМ является экзамен по модулю.

2. Формы контроля и оценивания элементов профессионального модуля

Таблица 1

Элемент профессионального модуля	Форма контроля и оценивания	
	Промежуточная	Текущий контроль
	аттестация	
МДК. 02.01 Микропроцессорные системы	Контрольная работа	Контрольный срез
	Экзамен	
МДК. 02.02 Программирование	Контрольная работа	Контрольный срез
микроконтроллеров	Дифференцированный	
	зачет	
МДК.02.03 Разработка прикладных	Контрольная работа	Собеседование
приложений	Экзамен	Контрольный срез
	Курсовой проект	
УП	Дифференцированный	
	зачет	
ПП	Дифференцированный	
	зачет	
ПМ (в целом)	Экзамен по модулю	

3. Результаты освоения профессионального модуля

3.1. Оценка профессиональных и общих компетенций

В результате контроля и оценки по ПМ осуществляется комплексная проверка следующих профессиональных и общих компетенций:

Таблина 2

Профессиональные	Показатели оценки результата	
компетенции		
ПК 2.1.	Проектировать, разрабатывать и отлаживать программный код модулей	
	управляющих программ.	
ПК 2.2.	Владеть методами командной разработки программных продуктов.	
ПК 2.3.	Выполнять интеграцию модулей в управляющую программу.	
ПК 2.4.	Тестировать и верифицировать выпуски управляющих программ.	
ПК 2.5.	Выполнять установку и обновление версий управляющих программ (с	

	учетом миграции – при необходимости).	
Общие компетенции	Показатели оценки результата	
OK 01	Выбирать способы решения задач профессиональной деятельности	
	применительно к различным контекстам	
OK 02	Использовать современные средства поиска, анализа и интерпретации	
	информации, и информационные технологии для выполнения задач	
	профессиональной деятельности.	
OK 04	Эффективно взаимодействовать и работать в коллективе и команде.	
OK 09	Пользоваться профессиональной документацией на государственном и	
	иностранном языках.	

3.2. Общие и (или) профессиональные компетенции, проверяемые дополнительно: (перечислить при наличии) (не предусмотрено)

- 3.3. Требования к портфолио: (не предусмотрено)
- 3.4. Требования к курсовой работе (проекту):

Требования к курсовой работе по дисциплине «Разработка прикладных приложений»

Курсовая работа по дисциплине должна отвечать ряду требований:

- 1. тематика, предмет и объект исследования должны быть актуальными;
- 2. содержание и форма подачи материала должны быть конкретными;
- 3. работа должны быть оформлена в соответствии требованиями.

Курсовая работа студента должна:

- 1. показать умение студента обосновать актуальность темы, творчески подойти к избранной теме, использовать методы научного исследования, анализировать источники;
- 2. отличаться глубиной изложения, научным подходом и системным анализом существующих в отечественной и зарубежной науке точек зрения;
- 3. содержать четкую формулировку целей, задач и гипотезы, определение предмета и объекта исследования;
- 4. соответствовать всем требованиям, предъявляемым к оформлению курсовых работ.

4. Оценка освоения теоретического курса профессионального модуля 4.1. Оценочные средства текущего контроля успеваемости и критерии оценки

МДК. 02.01 Микропроцессорные системы

Вопросы к контрольным срезам

Контрольный срез № 1.

Вариант 1

- 1. Что такое схемы жесткой и гибкой логики?
- 2. Каковы функциональные особенности микропроцессоров?
- 3. Что такое системная шина? Влияет ли ее быстродействие на скорость выполнения программ МПС?
 - 4. Каково назначение подсистемы памяти?
 - 5. Зачем нужна подсистема ввода вывода?
 - 6. Какие устройства относятся к классу периферийных устройств?
- 7.Где быстрее осуществляется обмен информацией между МП и внешними устройствами— в двухшинной или трехшинной системе?
 - 8. Как осуществляется ввод-вывод данных в микропроцессорной системе?
- 9. Что обязательно должно храниться в постоянной памяти микропроцессорной системы?
- 10. Что такое нагрузочная способность шин? Почему нельзя подключать к шинам бесконечное множество микросхем?
 - 11. Чем отличается контроллер от микроконтроллера?
 - 12.В каких узлах автомобиля используются микроконтроллеры?
- 13. Каковы отличия между персональным компьютером и микрокомпьютером?
 - 14. От чего зависит быстродействие микропроцессорных систем?
 - 15. Что такое ПЛИС? В чем ее «гибкость» и в чем ее «жесткость»?
- 16.Почему и каким образом разрядность шины адреса влияет на быстродействие?

- 1. Дайте определение понятиям «автомат», «программа», «команда» и «память программ».
- 2. Приведите основные исторические сведения о развитии микропроцессоров.
 - 3. Перечислите критерии классификации микропроцессоров.
- 4. Перечислите компоненты простейшей микропроцессорной системы, организованной по архитектуре «с тремя шинами».
 - 5. Каковы основные принципы построения MPP- и SMP-систем?
 - 6. Приведите общий алгоритм выполнения команды процессором.
- 7. Дайте определение понятиям «системная синхронизация», «машинный такт», «машинный цикл» и «цикл команды».

- 8. Каковы алгоритмы функционирования микропроцессорной системы в режиме прерывания и прямого доступа к памяти?
 - 9. Приведите основные характеристики запоминающих устройств.
- 10. Каковы принципы функционирования динамической, статической и энергонезависимой памяти? Назовите методы и способы организации кэшпамяти.
- 11. Что такое карта памяти? Перечислите основные критерии и способы распределения адресного пространства вычислительных систем

Контрольный срез №2

Вариант 1

по дисциплине: Микропроцессорные системы

- 1. Дайте определение понятию «датчик», перечислите основные типы датчиков.
- 2. Приведите примеры резистивных датчиков и систем нормализации сигнала с помощью моста Уитстона.
- 3. Рассмотрите известные датчики для измерения величины силы (давления).
 - 4. Перечислите основные типы датчиков для измерения температуры.
 - 5. Раскройте сущность метода компенсации холодного спая.
 - 6. Проведите сравнительный анализ резистивных, полупроводниковых датчиков температуры и термисторов.
- 7. Приведите примеры использования датчика температуры с цифровым выходом.
 - 8. Рассмотрите промышленные стандарты сетей датчиков

- 1. Приведите основные исторические сведения и структурные составляющие известных групп микроконтроллеров ATMEL.
 - 2. Какова организация ядра AVR-микроконтроллеров?
 - 3. Рассмотрите AVR-микроконтроллер с точки зрения программиста.
 - 4. Перечислите основные регистры микроконтроллеров AVR.
- 5. Перечислите основные исполнительные модули микроконтроллеров AVR.
- 6. Каковы принципы функционирования портов? Почему порт называют квазидвунаправленным?
- 7. Приведите пример использования таймера для определения длины импульса, а также таймера в режиме тахометра.
 - 8. Что такое широтно-импульсная модуляция.
- 9. Каков принцип функционирования и какова цель применения сторожевого таймера?
- 10. Приведите примеры синхронной и асинхронной последовательной связи, раскройте принципы и режимы работы последовательного обмена.

- 11. Приведите примеры использования микроконтроллеров с АЦП и ЦАП для управления промышленным оборудованием.
- 12. Разработайте функциональную схему системы и программу на языке ассемблера AVR для управления модулем терморегулятора с использованием термопары и цифрового термореле, управляемого по каналу I2C.

Оценка **«отлично»** выставляется студенту за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом за умение связывать теорию с практикой, высказывать и обосновывать свои суждения. Отличная отметка предполагает грамотное, логичное изложение ответа.

Оценка **«хорошо»** выставляется студенту, если студент полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

Оценка **«удовлетворительно»** выставляется студенту, если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.

Оценка **«неудовлетворительно»** выставляется студенту, если студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определение понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для решения практических задач; за полное незнание и непонимание учебного материала или отказ отвечать.

Вопросы для контрольной работы Вариант 1

- 1. Центральное устройство (или комплекс устройств) ЭВМ или вычислительной системы, которое выполняет арифметические и логические операции, управляет вычислительным процессом и координирует работу периферийных устройств системы называется ...
- 1. микропроцессором
- 2. процессором
 - 3. микропроцессорной системой
- 2. В классе 110010_2 девочек и 1010_2 мальчиков. Сколько учеников в классе?
 - 1) 10
 - 2) 20
 - 3) 30
 - 4) 40

3. Какой метод адресации предполагает размещение операнда внутри выполняемой программы?

- 1. абсолютная адресация
- 2. регистровая адресация
- 3. косвенная адресация
- 4. непосредственная адресация
- 5. операнд всегда находится внутри программы

4. Какой сигнал используется для организации асинхронного обмена по магистрали ISA?

- 1. I/O CH RDY
- 2. I/O CS16
- 3. I/O CH CK
- 4. AEN
- 5. SBHE

5. Какой тип обмена обеспечивает гарантированную передачу информации любому исполнителю?

- 1. синхронный
- 2. асинхронный
- 3. синхронный и асинхронный
- 4. ни синхронный, ни асинхронный

6. В каком порядке следуют типы информации в ассемблерной строке?

- 1. мнемоника, метки, операнды, комментарий
- 2. метки, мнемоника, операнды, комментарий
- 3. операнды, метки, мнемоника, комментарий
- 4. метки, операнды, мнемоника, комментарий

7. К какой группе команд относятся команды работы со стеком?

- 1. арифметические команды
- 2. логические команды
- 3. команды пересылки
- 4. команды переходов
- 5. к отдельной группе

8. Сколько всего прерываний может быть в ПК?

- 1. 8
- 2. 16

- 3. 32
- 4. 64
- 5. 256

9. Для чего служит регистр признаков?

- 1. для хранения флагов результатов выполненных операций
- 2. для хранения кодов специальных команд
- 3. для хранения кода адреса
- 4. для определения режима работы микропроцессорной системы
- 5. для обслуживания стека

10. Структура какой шины влияет на разнообразие режимов обмена?

- 1. шины данных
- 2. шины управления
- 3. шины питания
- 4. шины адреса

11. Устройство компьютера, предназначенное для передачи данных:

- а) системная плата
- б) контроллер
- в) микропроцессор
- г) оперативное запоминающее устройство

12. Такт работы процессора – это...

- а) период времени, за который осуществляется выполнение команды исходной программы в машинном виде; состоит из нескольких тактов
- б) устройство, предназначенное для временного хранения данных ограниченного размера
 - в) комплекс команд, поддерживающий работу системы
- г) промежуток времени между соседними импульсами генератора тактовых импульсов

13. Основное исполнительное устройство в процессоре – это:

- а) ядро
- б) буфер адреса переходов
- в) предсказатель переходов
- г) шина

14. Упрощенный вариант Pentium II для дешевых компьютеров – это:

- a) Pentium P55
- б) Celeron
- в) Cyrix
- г) AMD

15. В состав микропроцессора входят: (несколько ответов)

- а) устройство управления (УУ)
- б) постоянное запоминающее устройство (ПЗУ)
- в) кодовая шина данных
- г) арифметико логическое устройство

16. Мультиядерный микропроцессор – это ...

- а) процессор с мощным ядром
- б) процессор с несколькими среднепроизводительными ядрами
- в) процессор с несколькими высокопроизводительными ядрами
- г) процессор со среднепроизводительным ядром

17. Микропроцессор – это...

- а) микросхема, предназначенная для управления электронными устройствами
- б) устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в машинном коде
- в) электронная схема произвольной сложности, изготовленная на полупроводниковой подложке

18. Процессор имеет 16 разрядов шины адреса и 8 разрядов шины данных. Какой объем памяти, адресуется:

- a) 64Kx8
- б) 8Кх8
- в) 2Kx4
- г) 8Kx4

19. Сколько адресных входов имеет микросхема памяти 256х4:

- a) 8
- б) 11
- в) 13
- г) 16

20. Какой режим микропроцессорных систем используется для передачи больших массивов информации между внешними устройствами:

- а) ожидания
- б) прерывания
- в) прямого доступа к памяти
- г) прямой передачи данных

21. Режим работы микропроцессорных систем позволяет обработку информации по приоритету:

-) внешний
- б) прерывания
- в) прямого доступа к памяти
- г) прямой передачи данных

22. Каково назначение контроллера приоритетных прерываний:

- а) ускорить обмен между памятью и внешним устройством
- б) срочное обслуживание внешнего устройства
- в) выработка временных задержек
- г) организация обмена в последовательном коде

- 1. Чему равен результат сложения чисел 1102 и 128?
- 1) 6_{10}
- 2) 10₁₀
- 3) 100002
- 4) 178
- 2. Ячейка памяти компьютера состоит из однородных элементов, называемых:
 - 1) кодами
 - 2) разрядами
 - 3) цифрами
 - 4) коэффициентами
- 3. Обрабатывающее и управляющее устройство, выполненное с использованием технологии БИС (часто на одном кристалле) и обладающее способностью выполнять под программным управлением обработку информации, включая ввод и вывод информации, арифметические и логические операции и принятие решений называется ...
- 1. микропроцессором
- 2. процессором
- 3. микропроцессорной системой
- 4. Действия по выбору из памяти и выполнению одной команды называются ...
- 1. машинный шикл
- 2. машинный такт
- 3. командный цикл
 - 5. Какой режим обмена предполагает отключение процессора?
 - 1. процессор никогда не отключается
 - 2. программный обмен
 - 3. обмен по прямому доступу к памяти
 - 4. обмен по прерываниям
 - 6. Какой тип обмена используется в системной магистрали ISA?

- 1. синхронный
- 2. асинхронный
- 3. синхронный с возможностью асинхронного обмена
- 4. мультиплексированный

7. Структура какой шины влияет на разнообразие режимов обмена?

- 1. шины данных
- 2. шины управления
- 3. шины питания
- 4. шины адреса

8. Какая архитектура обеспечивает более высокое быстродействие?

- 1. принстонская
- 2. гарвардская
- 3. фон-неймановская
- 4. быстродействие не зависит от архитектуры

9. Какая структура шин адреса и данных обеспечивает большее быстродействие?

- 1. мультиплексированная
- 2. немультиплексированная
- 3. двунаправленная
- 4. быстродействие от структуры не зависит

10. Какой режим обмена обеспечивает наибольшую скорость передачи информации?

- 1. обмен по прямому доступу к памяти
- 2. программный обмен
- 3. обмен по прерываниям
- 4. все режимы одинаковы по быстродействию

11. Процессор, функционирующий с сокращенным набором команд:

- a) CISC
- б) RISC
- в) MISC
- г) VLIW

12. К основным параметрам МП не относится:

- а) тактовая частота
- б) внутренняя разрядность данных
- в) пропускная способность
- г) адресуемая память

13. Количество бит, которые МП может обрабатывать одновременно - это:

- а) внешняя разрядность данных
- б) тактовая частота
- в) внутренняя разрядность данных
- г) степень интеграции микросхемы

14. От разрядности микропроцессора зависит:

- а) количество используемых внешних устройств
- б) максимальный объем внутренней памяти и производительность компьютера
 - в) возможность подключения к сети
 - г) возможность сжатия данных

15. Конвейеризация – это...

- а) процесс реализации процессорных команд по нескольким линиям
- б) технология обработки команд
- в) многопоточная параллельная обработка команд
- г) технология обработки данных несколькими процессорами одновременно

16. Корпуса процессоров бывают:

- а) корпус с односторонним контактом и безкорпусный
- б) матрица со штырьковыми выводами и пленочный
- в) корпус с открытым кристаллом и матричный

17. Процессор имеет 14 регистров общего назначения. Сколько разрядов в поле команды необходимые для адресации к ним:

- a) 7
- б) 4
- B) 3
- г) 8

18. Представить десятичное число 45 в двоичном коде.

- a) 101101
- б) 110010
- в) 100011
- г) 111010
- 19. Какой режим микропроцессорных систем используется для передачи больших массивов информации между памятью и внешним устройством:
 - а) ожидания
 - б) прерывания
 - в) прямого доступа к памяти
 - г) прямой передачи данных

20. Режим работы микропроцессорных систем не требует обращения к внешним устройствам:

- а) внешний
- б) прерывания
- в) прямого доступа к памяти
- г) прямой передачи данных

21. Каково назначение контроллера прямого доступа к памяти:

- а) ускорить обмен между памятью и внешним устройством
- б) срочное обслуживание внешнего устройства
- в) выработка временных задержек
- г) организация обмена в последовательном коде

22. Каково назначение программного таймера:

- а) ускорить обмен между памятью и внешним устройством
- б) срочное обслуживание внешнего устройства
- в) выработка временных задержек
- г) организация обмена в последовательном коде

Критерии оценивания компетенций

Оценка **«отлично»** выставляется студенту, если 90-100% правильных ответов.

Оценка **«хорошо»** выставляется студенту, если 80-89% правильных ответов.

Оценка **«удовлетворительно»** выставляется студенту, если 70-79% правильных ответов.

Оценка **«неудовлетворительно»** выставляется студенту, если 69% и менее правильных ответов.

МДК.02.02 Программирование микроконтроллеров

Вопросы к контрольным срезам

Контрольный срез № 1.

Вариант 1

- 1. Что такое микроконтроллеры, микропроцессоры и сигнальные процессоры
- 2. Области применения микроконтроллеров
- 3. Целочисленные двоичные коды
- 4. Запись текстов двоичным кодом
- 5. Запись десятичных чисел двоичным кодом
- 6. Представление чисел в двоичном коде с плавающей запятой
- 7. Масочные ПЗУ, ППЗУ, РПЗУ
- 8. EEPROM и flash память
- 9. Внутреннее устройство статического ОЗУ
- 10. Команды микропроцессора
- 11. Системная шина микропроцессора
- 12. Принципы построения параллельного порта. Подключение внешних устройств к микропроцессору
- 13. Принципы построения последовательных портов. Виды последовательных портов
- 14. Принципы построения схем таймеров микропроцессоров
- 15. Архитектура микроконтроллеров MCS-51
- 16. Система команд микроконтроллеров MCS-51

- 1. Виды адресации
- 2. Инструкции микроконтроллеров MCS-51
- 3. Особенности построения параллельных портов микроконтроллеров MCS-51
- 4. Особенности построения памяти микроконтроллеров семейства MCS-51
- 5. Внутренние таймеры микроконтроллера, особенности их применения
- 6. Устройство и особенности применения последовательного порта микроконтроллеров семейства MCS-51
- 7. Особенности проектирования схем на микроконтроллерах
- 8. Особенности проектирования системы питания для устройств на микроконтроллерах
- 9. Языки программирования для микроконтроллеров
- 10.Применение подпрограмм при программировании. Понятие подпрограммы процедуры и подпрограммы функции
- 11. Написание программ для микропроцессоров. Понятие программымонитора и операционной системы реального времени
- 12. Понятие структурного программирования. Применение комментариев
- 13. Понятие многофайлового и многомодульного программирования

Вариант 1

1. Сколько будет 5F+3?

- 1. Что такое основание системы счисления?
- 2. Какие цифры имеются в двоичной системе?
- 3. Какие цифры имеются в шестнадцатеричной системе?
- 4. Сколько будет 4F+1?
- 5. Расскажите о преимуществах микроконтроллеров.
- 6. Какие фирмы выпускают изделия с микроконтроллерами?
- 7. Какие функции выполняют микроконтроллеры?
- 8. Сколько банков в микроконтроллере РІС?
- 9. Как записываются адреса регистров?
- 10. Как можно обратиться в программе к регистру?
- 11. Что такое адрес регистра?
- 12. Какие адреса у регистров общего назначения?
- 13.В каких банках находятся регистры PORTCuTRISC?

Вариант 2

- 1. Расскажите, какую реальную задачу решает ваша программа.
- 2. Какие адреса используются для РОН?
- 3. Приведите инструкцию установки бита. Когда она применяется?
- 4. Приведите инструкцию сброса бита. Когда она применяется?
- 5. Как происходит сдвиг вправо (влево).
- 6. Как регистр Status участвует в выполнении операций сдвига?
- 7. Расскажите о применении операции сдвига.
- 8. Расскажите об операции «инверсия» и ее применении.
- 9. Расскажите об операции «обмен полубайтами» и ее применении.
- 10. Что должно быть записано в бите Саггудля правильного выполнения умножения или деления.
- 11. Как настроить PORTCна выход?
- 12. Как определить с каким банком работает программа?
- 13.Почему после деления 243 на 4 и умножения частного на 4 не было получено исходное число?

Критерии оценивания компетенций

Оценка **«отлично»** выставляется студенту, если 90-100% правильных ответов.

Оценка **«хорошо»** выставляется студенту, если 80-89% правильных ответов.

Оценка **«удовлетворительно»** выставляется студенту, если 70-79% правильных ответов.

Оценка **«неудовлетворительно»** выставляется студенту, если 69% и менее правильных ответов.

Вопросы для контрольной работы

- 1. Назначение PCH INTCON?
- 2. Что такое прерывания?
- 3. Как в программе используется флаг прерывания?
- 4. Какие задачи решает обработчик прерывания?
- 5. Когда срабатывает обработчик прерываний?
- 6. Что такое вектор сброса и вектор прерывания?
- 7. Что является аргументом при вызове подпрограммы Timer.
- 8. Как при наладке программы выполняется переход к обработчику?
- 9. Назначение символа «;» в тексте программы?
- 10. Порядок отладки программы.
- 11. Что имитируют кнопки клавиатуры?
- 12. Назначение адресов h'00' иh'04' оперативной памяти.
- 13. Как устраняется дребезг контактов?
- 14. Что такое паразитные наводки?
- 15.В любой ли ситуации срабатывает прерывание?

Критерии оценивания компетенций

Оценка **«отлично»** выставляется студенту за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом за умение связывать теорию с практикой, высказывать и обосновывать свои суждения. Отличная отметка предполагает грамотное, логичное изложение ответа.

Оценка **«хорошо»** выставляется студенту, если студент полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

Оценка **«удовлетворительно»** выставляется студенту, если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.

Оценка **«неудовлетворительно»** выставляется студенту, если студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определение понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для

решения практических задач; за полное незнание и непонимание учебного материала или отказ отвечать. Критерии оценивания компетенций

Оценка **«отлично»** выставляется студенту за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом за умение связывать теорию с практикой, высказывать и обосновывать свои суждения. Отличная отметка предполагает грамотное, логичное изложение ответа.

Оценка **«хорошо»** выставляется студенту, если студент полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

Оценка **«удовлетворительно»** выставляется студенту, если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.

Оценка **«неудовлетворительно»** выставляется студенту, если студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определение понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для решения практических задач; за полное незнание и непонимание учебного материала или о

МДК.02.03 Разработка прикладных приложений

Вопросы для контрольных срезов Контрольный срез №1

Вариант 1

- 1. Этапы создания исполняемой программы. Инструментальные средства разработки программ: интегрированные среды, компиляторы, интерпретаторы, трансляторы, ассемблеры, компоновщики.
- 2. Принципы объектно-ориентированного программирования и его отличие от процедурного и структурного (модульного) стилей разработки программ.
 - 3. Понятие интерфейса

- 1. Стандартные типы данных с языков C/C++ и их длина в машинном представлении.
 - 2. Базовые унарные, бинарные и тернарная операции языков С/С++.
 - 3. Форматы и функции ввода/вывода чисел и текста языков С/С++.
- 4. Стандартные потоки ввода/вывода языка C++ и способы управления форматом выводимых в поток данных.

Контрольный срез №2

Вариант 1

- 1. Примеры использования операторов ветвления, цикла и передачи управления в языке С.
 - 2. Указатели, ссылки и примеры их использования.
- 3. Массивы, строки: способы задание размерности, выделение памяти и инициализации.
- 4. Типы данных, определяемых пользователем, в языке С: перечисления, структуры, битовые поля, объединения.
- 5. Динамические структуры данных: списки, стеки, очереди, бинарные деревья.
- 6. Объявление и определение функций. Способы передачи параметров.
- 7. Функции с переменным числом параметров, со значениями параметров по умолчанию.
 - 8. Перегрузка и шаблоны функций.
- 9. Функции стандартной библиотеки для работы со строками, символами и файлами.

- 1. Описание классов. Элементы класса. Объекты и доступ к их элементам.
- 2. Статические элементы класса. Дружественные функции и классы.
- 3. Конструкторы и деструкторы объектов.
- 4. Перегрузка операций с объектами: унарных, бинарных, присваивания, new и delete.
 - 5. Наследование классов. Ключи доступа к элементам классов.
- 6. Интегрированная среда разработки приложений Embarcadero RAD Studio (CodeGear
 - 7. RAD Studio): версии, структура, интерфейс.
- 8. Среда разработки программного обеспечения Microsoft Visual Studio: редакции, компоненты, интерфейс разработчика.
- 9. Особенности языка С#, смысл управляемого кода. Разработка приложений для среды CLR.
- 10. Разработка GUI-приложений в среде Matlab. Элементы управления и их свойства.
- 11. Кроссплатформенная среда разработки ПО Qt: средства разработки, структура и особенности (модули, сигналы, слоты, МОС).
 - 12. Графическая библиотека QWT
- 13. Регулярные выражения: принципы составления шаблонов, метасимволы
 - 14. Стандартная библиотека шаблонов STL

- 1. Задачи и особенности прикладного программирования.
- 2. Основные инструменты прикладного программиста.
- 3. Язык программирования Pascal
- 4. Выбор языка программирования.
- 5. Алгоритмическая и объектно-ориентированная декомпозиция.
- 6. Принципы объектно-ориентированного анализа
- 7. Объекты и типы объектов.
- 8. Атрибуты и типы атрибутов.
- 9. Экземпляры и состояния.
- 10. Жизненный цикл и поведение объектов: сообщения, события, методы, действия.
 - 11. Объектно-ориентированное проектирование.
 - 12. Документирование результатов анализа и проектирования.
 - 13. Основы языка UML (Unified Modeling Language).
 - 14. Структура программы на языке Delphi.
 - 15. Проект. Компиляция программы и сборка исполняемого модуля.
 - 16. Размещение программы и данных в памяти.

Оценка **«отлично»** выставляется студенту за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом за умение связывать теорию с практикой, высказывать и обосновывать свои суждения. Отличная отметка предполагает грамотное, логичное изложение ответа.

Оценка **«хорошо»** выставляется студенту, если студент полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

Оценка **«удовлетворительно»** выставляется студенту, если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.

Оценка **«неудовлетворительно»** выставляется студенту, если студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определение понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для решения практических задач; за полное незнание и непонимание учебного материала или отказ отвечать.

Темы курсовых работ

по дисциплине Разработка прикладных приложений

- 1. Система контроля температуры на основе МК
- 2. Система ограничения скорости автомобиля на основе МК
- 3. Система треккинга автомобиля на основе МК
- 4. Система учета электроэнергии на основе МК
- 5. Система пожаробезопасности и обнаружения газов в помещении на основе МК
- 6. Разработка программы управления на микроконтроллере для системы контроля допуска в здание
- 7. Разработка программы управления на микроконтроллере для управляющей системы охлаждения ПК
- 8. Разработка программы управления на микроконтроллере для калькулятора
 - 9. Разработка программы управления на микроконтроллере для часов
- 10. Разработка программы управления на микроконтроллере для цифровой клавиатура для ПК
- 11. Разработка программы управления на микроконтроллере для системы проверки кабеля типа витая пара
- 12. Разработка программы управления на микроконтроллере для системы вывода изображений на светодиодную матрицу
- 13. Разработка программы управления на микроконтроллере для системы включения и выключения света по звуковому сигналу
- 14. Разработка программы управления на микроконтроллере для системы включения и выключения света в помещении, по введенному графику.
- 15. Разработка программы управления на микроконтроллере для системы поддержания равновесия в полете для квадрокоптера
- 16. Разработка программы управления на микроконтроллере для системы управления коммуникациями частного домовладения
- 17. Разработка программы управления на микроконтроллере для системы пульта управления
- 18. Разработка программы управления на микроконтроллере для подвижного робота, с автопарковкой
- 19. Разработка программы управления на микроконтроллере для системы зарядки и индикации аккумуляторных батарей
- 20. Разработка программы управления на микроконтроллере для измерения скорости ветра на улице и ее индикации
- 21. Разработка программы управления на микроконтроллере для цифрового амперметра
- 22. Разработка программы управления на микроконтроллере для тахометра
- 23. Разработка программы управления на микроконтроллере для телефонной сети из трех абонентов
- 24. Разработка программы управления на микроконтроллере для автомобильной сигнализации
- 25. Разработка программы управления на микроконтроллере для проигрывателя рингтонов

- 26. Разработка программы управления на микроконтроллере для дистанционного инфракрасного управления
- 27. Разработка программы управления на микроконтроллере для сигнализации в холодильной установке
- 28. Разработка программы управления на микроконтроллере для сетевой метеостанции
- 29. Разработка программы управления на микроконтроллере для создание игровой приставки «тетрис»
- 30. Разработка программы управления на микроконтроллере для создания светодиодной RGB матрицы, с выводом на нее изображения
- 31. Разработка программы управления на микроконтроллере для системы контроля доступа на основе RFID
- 32. Разработка программы управления на микроконтроллере для системы управления роботом через Bluethoon
- 33. Разработка программы управления на микроконтроллере для считывания и записи показаний датчиков для создания массива данных.
- 34. Разработка программы управления на микроконтроллере для считывания команд радиопульта управления
- 35. Разработка программы управления на микроконтроллере для управления миро-робота паука
- 36. Разработка программы управления на микроконтроллере для сортировки изделий
- 37. Разработка программы управления на микроконтроллере для тамагочи
- 38. Разработка программы управления на микроконтроллере для оросителя газона
- 39. Разработка программы управления на микроконтроллере для электронной копилки для мелочи
- 40. Разработка программы управения на микроконтроллере для управления «треугольником» передвижения робота
- 41. Разработка программы управления на микроконтроллере для системы подачи заготовок, на шаговых двигателях
- 42. Разработка программы управления на микроконтроллере для управления балансирующим роботом
- 43. Разработка программы управления на микроконтроллере для ориентирования робота в пространстве с объездом препятствия
- 44. Разработка программы управления на микроконтроллере для Bluethoon парктроника
- 45. Разработка программы управления на микроконтроллере для управления автоматизированным «конвейером» через облачные среды

Оценка «отлично» выставляется в том случае, если:

— содержание и оформление работы соответствует требованиям данных Методических указаний и теме работы;

- работа актуальна, выполнена самостоятельно, имеет творческий характер, отличается определенной новизной; дан обстоятельный анализ степени теоретического исследования проблемы, различных подходов к ее решению; в докладе и ответах на вопросы показано знание нормативной базы, учтены последние изменения в законодательстве и нормативных документах по данной проблеме; проблема раскрыта глубоко и всесторонне, материал изложен логично; теоретические положения органично сопряжены с практикой; даны представляющие интерес практические рекомендации, вытекающие из анализа проблемы; широко используются работе материалы исследования, проведенного автором самостоятельно или в составе группы (в отдельных случаях допускается опора на вторичный анализ имеющихся данных); в работе проведен количественный анализ проблемы, который подкрепляет теорию и иллюстрирует реальную ситуацию, приведены таблицы сравнений, графики, диаграммы, формулы, показывающие умение автора формализовать результаты исследования; широко представлен список использованных источников по теме работы; приложения К работе иллюстрируют достижения автора подкрепляют его выводы; по своему содержанию и форме работа соответствует всем предъявленным требованиям. Оценка **«хорошо»**: содержание и оформление работы соответствует требованиям данных методических указаний; содержание работы в целом соответствует заявленной теме; работа актуальна, написана самостоятельно; дан анализ степени теоретического исследования проблемы; в докладе и ответах на вопросы основные положения работы раскрыты на хорошем или достаточном теоретическом и методологическом уровне; теоретические положения сопряжены с практикой; представлены количественные показатели, характеризующие проблемную ситуацию; практические рекомендации обоснованы; приложения грамотно составлены и прослеживается связь с
- положениями курсовой работы; составлен список использованных источников по теме работы.

Оценка **«удовлетворительно»**:

содержание и оформление работы соответствует требованиям данных методических указаний; имеет место определенное несоответствие содержания работы заявленной теме; в докладе и ответах на вопросы исследуемая проблема в основном отличается новизной, теоретической раскрыта, аргументированностью, имеются не точные или не полностью правильные ответы; нарушена логика изложения материала, задачи раскрыты не полностью; в работе не полностью использованы необходимые для раскрытия темы научная литература, нормативные документы, а также материалы исследований; теоретические положения слабо увязаны с управленческой практикой, практические рекомендации носят формальный бездоказательный характер. Оценка «неудовлетворительно»: содержание и оформление работы не соответствует требованиям данных методических указаний; содержание работы не соответствует ее теме; в докладе и ответах на вопросы даны в основном неверные ответы; работа содержит существенные теоретико-методологические ошибки и поверхностную аргументацию основных положений; курсовая работа носит умозрительный и (или) компилятивный характер;

предложения автора четко не сформулированы.

4.2. Оценочные средства промежуточной аттестации и критерии оценки МДК. 02.01 Микропроцессорные системы

Вопросы к экзамену

- 1. Основные понятия о микропроцессорах и микропроцессорных системах.
 - 2. Шинная структура связей.
 - 3. Архитектура микропроцессорных систем.
 - 4. Типы микропроцессорных систем.
 - 5. Режимы работы микропроцессорной системы.
 - 6. Шины МПС.
 - 7. Прохождение сигналов по магистрали.
 - 8. Обмен информацией в МПС.
 - 9. Циклы программного обмена.
 - 10. Циклы обмена по прерываниям.
 - 11. Циклы обмена в режиме ПДП.
 - 12. Функции процессора.
 - 13. Структура микропроцессора.
 - 14. Функции памяти.
 - 15. Функции устройств ввода/вывода.
 - 16. Организация ввода/вывода в МПС.
 - 17. Форматы передачи данных.
 - 18. Параллельная передача данных.
 - 19. Параллельный контроллер ввода/вывода.
 - 20. Последовательная передача данных.
 - 21. Синхронный последовательный интерфейс.
 - 22. Асинхронный последовательный интерфейс.
 - 23. Управление в МПС.
 - 24. Синхронизация МПС.
 - 25. Слово состояния как средство управления МПС.
 - 26. Программная модель микропроцессора.
 - 27. Особые режимы работы МП. Прерывания.
 - 28. Виды арбитража.
 - 29. Программируемый контроллер прерываний.
 - 30. Особые режимы работы МП. Прямой доступ к памяти.
 - 31. Контроллер ПДП.
 - 32. Особые режимы работы МП. Останов.
 - 33. Классификация и структура микроконтроллеров.
 - 34. Структура процессорного ядра МК.
 - 35. Система команд процессора МК.
 - 36. Память программ и данных МК.
 - 37. Регистры микроконтроллера.
 - 38. Стек микроконтроллера.
 - 39. Внешняя память. Порты ввода/вывода.
 - 40. Таймеры и процессоры событий.
 - 41. Модуль прерываний микроконтроллера.

- 42. Схема формирования сигнала сброса МК.
- 43. Блок детектирования пониженного питания МК.
- 44. Сторожевой таймер.
- 45. Модули последовательного ввода/вывода.
- 46. Модули аналогового ввода/вывода.
- 47. Состав и назначение РІС-контроллеров.
- 48. Микроконтроллеры семейств РІС16СХХХ.
- 49. Микроконтроллеры подгруппы РІС16С8Х.
- 50. Особенности архитектуры РІС16С8Х.
- 51. Схема тактирования и цикл выполнения команды.
- 52. Организация памяти программ и стека МК РІС16С8Х.
- 53. Организация памяти данных МК РІС16С8Х.
- 54. Регистры специального назначения. МК РІС16С8Х.
- 55. Счетчик команд МК РІС16С8Х.
- 56. Прямая и косвенная адресации в МК РІС16С8Х.
- 57. Порты ввода/вывода МК РІС16С8Х.
- 58. Модуль таймера и регистр таймера МК РІС16С8Х.
- 59. Память данных в РПЗУ МК РІС16С8Х.
- 60. Организация прерываний МК РІС16С8Х.
- 61. Специальные функции МК РІС16С8Х.
- 62. Система команд МК РІС16С8Х.
- 63. Команды работы с байтами (МК РІС16С8Х.)
- 64. Команды работы с битами (МК РІС16С8Х).
- 65. Команды управления и работы с константами (МК PIC16C8X).
- 66. Особенности программирования и отладки МК РІС16С8Х.
- 67. Микроконтроллерное ядро СІР-51.
- 68. Подсистема прерываний ядра СІР-51.
- 69. Подсистема сброса и тактовых генераторов.
- 70. Охранный таймер.
- 71. Многофункциональный генератор.
- 72. Подсистема управления питанием.
- 73. Встроенная память ядра СІР-51.
- 74. Порты ввода/вывода.
- 75. Таймеры МК фирмы SiLabs.
- 76. Обобщенная структура МК С8051F060.
- 77. Подсистемы МК С8051F060.
- 78. Уровни представления МПС.
- 79. Ошибки, неисправности, дефекты.
- 80. Отладка МПС.
- 81. Контролепригодность МПС.
- 82. Функции средств отладки МПС.
- 83. Источник ошибок на этапах проектирования МПС.
- 84. Проверка правильности проекта.
- 85. Автономная отладка.
- 86. Комплексная отладка МПС.

Оценка **«отлично»** выставляется студенту за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом за умение связывать теорию с практикой, высказывать и обосновывать свои суждения. Отличная отметка предполагает грамотное, логичное изложение ответа.

Оценка **«хорошо»** выставляется студенту, если студент полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

Оценка **«удовлетворительно»** выставляется студенту, если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.

Оценка **«неудовлетворительно»** выставляется студенту, если студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определение понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для решения практических задач; за полное незнание и непонимание учебного материала или отказ отвечать.

- "один к одному"
- "многие ко многим"
- 1. Существует ряд стандартных методов организации файлов на магнитном диске и соответствующих методов доступа к ним:
 - Последовательный файл
 - Индексно-последовательный файл
 - Графический файл
 - Индексно-произвольный файл Отметьте не нужное
- 10. это новые сведения, которые могут быть использованы человеком для совершенствования его деятельности и пополнения знаний.
 - Информация;
 - Информационная система;
 - Информационная технология

МДК. 02.02 Программирование микроконтроллеров Вопросы к экзамену

- 1. Задачи и особенности прикладного программирования.
- 2. Основные инструменты прикладного программиста.
- 3. Язык программирования Pascal
- 4. Выбор языка программирования.
- 5. Алгоритмическая и объектно-ориентированная декомпозиция.
- 6. Принципы объектно-ориентированного анализа
- 7. Объекты и типы объектов.
- 8. Атрибуты и типы атрибутов.
- 9. Экземпляры и состояния.
- 10. Жизненный цикл и поведение объектов: сообщения, события, методы, действия.
- 11. Объектно-ориентированное проектирование.
- 12. Документирование результатов анализа и проектирования.
- 13. Основы языка UML (Unified Modeling Language).
- 14. Структура программы на языке Delphi.
- 15. Проект. Компиляция программы и сборка исполняемого модуля.
- 16. Размещение программы и данных в памяти.
- 17. Структура исполняемого модуля.
- 18. Переменные: объявление, определение, инициализация.
- 19. Переменные: значение, указатель, ссылка.
- 20. Время жизни, области видимости и классы памяти переменных.
- 21. Динамическое размещение данных в памяти.
- 22. Составные типы данных.
- 23. Массивы: размещение в памяти, доступ к элементам.
- 24. Одномерные и многомерные массивы.
- 25. Реализация вычислительных операций.
- 26. Арифметические и логические выражения.
- 27. Основные языковые конструкции.
- 28. Функции: объявление и определение.
- 29. Передача аргументов в функции.
- 30. Стандартная библиотека функций языка Borland Delphi.
- 31. Библиотека стандартного потокового ввода/вывода.
- 32. Форматированный ввод/вывод. Файловые потоки.
- 33. Классы. Инкапсуляция.
- 34. Сокрытие данных и видимость членов класса.
- 35. Конструктор. Полный конструктор.
- 36. Конструктор по умолчанию. Конструктор копирования.
- 37. Деструктор. Полиморфизм.
- 38. Перегрузка функций. Перегрузка операторов.
- 39. Параметрический полиморфизм.
- 40. Шаблоны функций.
- 41. Шаблоны классов.

- 42. Наследование.
- 43. Виртуальные функции и абстрактные базовые классы.
- 44. Множественное наследование.
- 45. Библиотека визуальных компонентов VCL.
- 46. Вектор. Очереди. Стек.
- 47. Список. Массивы. Алгоритмы.
- 48. Объекты-функции и предикаты.
- 49. Интерфейс пользователя. Основные понятия.
- 50. Стандартизация пользовательского интерфейса.
- 51. Интерфейс командной строки.
- 52. Текстовый интерфейс.
- 53. Оконный интерфейс.
- 54. Графический оконный интерфейс.
- 55. Web-интерфейс. Социальный интерфейс.
- 56. Современный графический пользовательский интерфейс.
- 57. Взаимодействие пользователя с программами.
- 58. Графический пользовательский интерфейс и его реализация в операционной системе Windows.
- 59. Основной объект интерфейса
- 60. Диалоговое окно и стандартные элементы управления, предназначенные для ввода информации и управления работой программы.
- 61. Визуализация научных и инженерных данных.
- 62. Уровни абстракции в процессе разработки программного обеспечения: архитектура, структура, реализация.
- 63. Цикл разработки прикладного программного обеспечения: концептуализация, анализ, проектирование, кодирование.
- 64. Цикл разработки прикладного программного обеспечения: тестирование, эволюция, сопровождение
- 65. Критерии оценки качества программы.
- 66. Тестирование и отладка программ.
- 67. Средства и инструменты разработки программного обеспечения.
- 68. Стиль программирования.

Оценка **«отлично»** выставляется студенту за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом за умение связывать теорию с практикой, высказывать и обосновывать свои суждения. Отличная отметка предполагает грамотное, логичное изложение ответа.

Оценка **«хорошо»** выставляется студенту, если студент полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

Оценка **«удовлетворительно»** выставляется студенту, если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.

Оценка «неудовлетворительно» выставляется студенту, если студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определение понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для решения практических задач; за полное незнание и непонимание учебного материала или отказ отвечать.

МДК.02.03 Разработка прикладных приложений Вопросы к экзамену

- 1. Нисходящее проектирование и программирование
- 2. Структурное проектирование и программирование
- 3. Объектно-ориентированное программирование
- 4. Модульное программирование
- 5. Визуальное программирование
- 6. Событийное программирование
- 7. Части интегрированной системы программирования
- 8. Состав окон, назначение окон.
- 9. Основные этапы разработки приложений в среде Delphi
- 10. Назначение каждого из этапов
- 11. Как получать числовое значение из строки элемента Edit?
- 12. В каких целях можно использовать элемент Label?
- 13. Что делает процедура Close, используемая в одной из кнопок Button?
 - 14. Как формируется имя процедур для кнопок Button?
 - 15. Структура модуля
 - 16. В каком месте модуля размещаются глобальные переменные?
 - 17. Как выбирать тесты для проверки правильности алгоритма?
- 18. Как записываются и выполняются операторы цикла на языке Pascal?
 - 19. Чем отличается поиск минимума от максимума?
- 20. Чем отличается поиск произведения от суммы? Поиск факториала от
 - 21. произведения?
- 22. Чему равно количество отрицательных (положительных) элементов в примере формирования нового массива?
- 23. Отличительные особенности в обработке текстовой и числовой информации, хранящейся в текстовых редакторах?
 - 24. Понятие класса и объекта
 - 25. Для чего предназначен класс TStrings?
 - 26. Отличие DrawGrid и StringGrid?

- 27. Переменными какого типа являются ячейки таблицы StringGrid?
- 28. Что определяют свойства ColCount, RowCount, FixedCols, FixedCols компонента StringGrid?
- 29. Переменную какого типа языка ObjectPascal можно поставить в соответствие компоненту StringGrid?
 - 30. Иерархия базовых классов
 - 31. Функции и методы класса
 - 32. Стандартные модули
 - 33. Организация многостраничного диалога
 - 34. Разработка основного меню
 - 35. Разработка локального меню
 - 36. Этапы создания многооконных проектов
 - 37. Программирование реакции на ошибочные ситуации

Оценка **«отлично»** выставляется студенту за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом за умение связывать теорию с практикой, высказывать и обосновывать свои суждения. Отличная отметка предполагает грамотное, логичное изложение ответа.

Оценка **«хорошо»** выставляется студенту, если студент полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

Оценка **«удовлетворительно»** выставляется студенту, если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности в определении понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.

Оценка **«неудовлетворительно»** выставляется студенту, если студент имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определение понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для решения практических задач; за полное незнание и непонимание учебного материала или отказ отвечать.

5. Фонд оценочных средств для экзамена

1. Паспорт

Назначение: ФОС предназначен для контроля и оценки результатов освоения профессионального ПМ.02 «Проектирование управляющих программ компьютерных систем и комплексов» по специальности 09.02.01 Компьютерные системы и коплексы

Профессиональные компетенции	Показатель оценки результатов
ПК 2.1 Проектировать, разрабатывать и отлаживать программный код модулей управляющих программ.	- Собирать исходные данные для разработки проектной документации на информационную систему.
ПК 2.2. Владеть методами командной разработки программных продуктов.	- Разрабатывать проектную документацию на разработку информационной системы в соответствии с требованиями заказчика.
ПК 2.3. Выполнять интеграцию модулей в управляющую программу.	- Разрабатывать подсистемы безопасности информационной системы в соответствии с техническим заданием.
ПК 2.4. Тестировать и верифицировать выпуски управляющих программ.	- Производить разработку модулей информационной системы в соответствии с техническим заданием.
ПК 2.5. Выполнять установку и обновление версий управляющих программ (с учетом миграции – при необходимости).	- Осуществлять тестирование информационной системы на этапе опытной эксплуатации с фиксацией выявленных ошибок кодирования в разрабатываемых модулях информационной системы.

Общие компетенции			Показатель оценки результатов		
ОК	01.	Выбирать	способы	решения	 точность распознавания сложных
	задач		професс	сиональной	проблемных ситуаций в различных контекстах;
	деяте	льности,	применител	іьно к	
различным контекстам.			решении задач профессиональной деятельности;		
					- оптимальность определения этапов решения
					задачи;
					- адекватность определения потребности в
					информации;
					– эффективность поиска;
					- адекватность определения источников
					нужных ресурсов;
					 разработка детального плана действий;
					- правильность оценки рисков на каждом
					шагу;
					точность оценки плюсов и минусов полученного
					результата, своего плана и его реализации,
					предложение критериев оценки и рекомендаций по
OTC	02	2			улучшению плана
ОК		Эсуществляті		анализ и	
_	-		ции, необход		
	лнения	задач	професс	сиональной	
деяте	ельности	l .			профессиональных задач;
					 адекватность анализа полученной

	информации, точность выделения в ней главных	
	аспектов;	
	– точность структурирования отобранной	
	информации в соответствии с параметрами поиска;	
	– адекватность интерпретации полученной	
	информации в контексте профессиональной	
	деятельности;	
ОК 04. Работать в коллективе и команде,	– эффективность участия в деловом общении	
эффективно взаимодействовать с коллегами,	для решения деловых задач;	
руководством, клиентами.	– оптимальность планирования	
	профессиональной деятельность	
ОК 09. Использовать информационные	– адекватность, применения средств	
технологии в профессиональной деятельности.	информатизации и информационных технологий для	
	реализации профессиональной деятельности	