Документ подписан простой электронной подписью Информация МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФИО: Шебзухова Фатара дънос государственное автономное образовательное учреждение высшего образования

Должность: Директор Пятигорского Бивандрод Кар Кар Сад Ский з ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Пятигорский институт (филиал) СКФУ федерального университета

Дата подписания: 10.06.2024 13:49:38 Колледж Пятигорского института (филиал) СКФУ

Уникальный программный ключ:

d74ce93cd40e39275c3ba2f58486412a1c8ef96f

Методические указания

по выполнению лабораторных работ по дисциплине «ФИЗИКА»

для студентов направления подготовки /специальности 43.02.16 ТУРИЗМ И ГОСТЕПРИИМСТВО

Методические указания для практических работ по дисциплине «Физика» составлены в соответствии с требованиями Φ ГОС СПО, предназначены для студентов, обучающихся по специальности 43.02.16 Туризм и гостеприимство.

Пояснительная записка

Методические рекомендации призваны оказывать помощь студентам в изучении основных понятий, идей, теорий и положений дисциплины «Физика», изучаемых в ходе конкретного занятия, способствовать развитию их умений, навыков и являются одним из способов проверки знаний студентов.

Выполнение учащимися лабораторных работ направленно на:

- обобщение, систематизацию, углубление, закрепление полученных теоретических знаний по конкретным темам;
- формирование умений применять полученные знания на практике и реализацию единства интеллектуальной и практической деятельности;
- развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др.;
- выработку при решении поставленных задач таких профессиональных качеств, как самостоятельность, ответственность, точность, творческая инициатива.

Методические рекомендации призваны оказывать помощь студентам в изучении основных понятий, идей, теорий и положений дисциплины, изучаемых в ходе конкретного занятия, способствовать развитию их умений, навыков и профессиональных компетенций.

Особое значение дисциплина имеет при формировании и развитии общих компетенций в соответствии с ФГОС:

- OK 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- OK 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности;
 - ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях.
- В рамках программы учебной дисциплины осваиваются личностные, метапредметные и предметные результаты в соответствии с требованиями ФГОС среднего общего образования.

Планируемые результаты освоения дисциплины личностные (ЛР), метапредметные (MP), предметные для базового уровня изучения (ПР).

- ЛР 01 Российскую гражданскую идентичность, патриотизм, уважение к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн).
- ЛР 02 Гражданскую позицию как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности.
 - ЛР 03 Готовность к служению Отечеству, его защите.
- ЛР 04 Сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире.

- ЛР 05 Сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности.
- ЛР 06 Толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения, способность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.
- ЛР 07 Навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- ЛР 08 Нравственное сознание и поведение на основе усвоения общечеловеческих ценностей.
- ЛР 09 Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.
- ЛР 10 Эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений.
- ЛР 11 Принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков.
- ЛР 12 Бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь.
- ЛР 13 Осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.
- ЛР 14 Сформированность экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности.
- ЛР 15 Ответственное отношение к созданию семьи на основе осознанного принятия пенностей семейной жизни.
- MP 01 Самостоятельно формулировать и актуализировать проблему, рассматривать ее всесторонне.
- MP 02 Устанавливать существенный признак или основания для сравнения, классификации и обобщения.
- MP 03 Определять цели деятельности, задавать параметры и критерии их достижения.
 - МР 04 Выявлять закономерности и противоречия в рассматриваемых явлениях.
- MP 05 Вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности.
- MP 06 Владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем.
 - МР 07 Способность и готовность к самостоятельному поиску методов решения

практических задач, применению различных методов познания.

- MP 08 Овладение видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных и социальных проектов.
- MP 09 Формирование научного типа мышления, владение научной терминологией, ключевыми понятиями и методами.
- MP 10 Ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях.
- MP 11 Выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу ее решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения.
- MP 12 Анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях.
 - МР 13 Давать оценку новым ситуациям, оценивать приобретенный опыт.
- MP 14 Владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления.
- MP 15 Создавать тексты в различных форматах с учетом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.
- MP 16 Оценивать достоверность, легитимность информации, ее соответствие правовым и морально-этическим нормам.
- MP 17 Использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности.
- MP 18 Владеть навыками распознавания и защиты информации, информационной безопасности личности.
- ПР 01 Сформированность представлений о роли и месте физики и астрономии в современной научной картине мира, о системообразующей роли физики в развитии естественных наук, техники и современных технологий, о вкладе российских и зарубежных ученых-физиков в развитие науки; понимание физической сущности наблюдаемых явлений микромира, макромира и мегамира; понимание роли астрономии в практической деятельности человека и дальнейшем научно-техническом развитии, роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач.
- ПР 02 Сформированность умений распознавать физические явления (процессы) и объяснять их на основе изученных законов: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, колебательное движение, резонанс, волновое движение; диффузия, броуновское движение, строение жидкостей и твердых тел, изменение объема тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах; электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная

индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света; фотоэлектрический эффект, световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность.

ПР 03 Владение основополагающими физическими понятиями и величинами, характеризующими физические процессы (связанными с механическим движением, взаимодействием тел, механическими колебаниями и волнами; атомно-молекулярным строением вещества, тепловыми процессами; электрическим и магнитным полями, электрическим током, электромагнитными колебаниями и волнами; оптическими явлениями; квантовыми явлениями, строением атома и атомного ядра, радиоактивностью); владение основополагающими астрономическими понятиями, позволяющими процессы, происходящие на звездах, характеризовать звездных системах, межгалактической среде; движение небесных тел, эволюцию звезд и Вселенной.

ПР 04 Владение закономерностями, законами и теориями (закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправности инерциальных систем отсчета; молекулярно-кинетическую теорию строения вещества, газовые законы, первый закон термодинамики; закон сохранения электрического заряда, закон Кулона, закон Ома для полной электрической цепи, закон Джоуля - Ленца, закон электромагнитной индукции, закон сохранения энергии, закон прямолинейного распространения света, закон отражения света, закон преломления света; закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада); уверенное использование законов и закономерностей при анализе физических явлений и процессов.

ПР 05 Умение учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчета, идеальный газ; модели строения газов, жидкостей и твердых тел, точечный электрический заряд, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач.

ПР 06 Владение основными методами научного познания, используемыми в физике: проводить прямые и косвенные измерения физических величин, выбирая оптимальный способ измерения и используя известные методы оценки погрешностей измерений, проводить исследование зависимостей физических величин с использованием прямых измерений, объяснять полученные результаты, используя физические теории, законы и понятия, и делать выводы; соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента и учебно-исследовательской деятельности с использованием цифровых измерительных устройств и лабораторного оборудования; сформированность представлений о методах получения научных астрономических знаний.

ПР 07 Сформированность умения решать расчетные задачи с явно заданной физической моделью, используя физические законы и принципы; на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины; решать качественные задачи, выстраивая логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления.

ПР 08 Сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни для обеспечения безопасности при обращении с бытовыми приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; понимание необходимости применения достижений физики и технологий для рационального природопользования.

ПР 09 Сформированность собственной позиции по отношению к физической информации, получаемой из разных источников, умений использовать цифровые технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации; развитие умений критического анализа получаемой информации;

ПР 10 Овладение умениями работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

ПР 11 Овладение (сформированность представлений) правилами записи физических формул рельефно-точечной системы обозначений Л. Брайля (для слепых и слабовидящих обучающихся).

Лабораторная работа № 1 Тема занятия: Законы сохранения в механике.

Цель работы: сравнить две величины — уменьшение потенциальной энергии прикрепленного к пружине тела при его падении и увеличение потенциальной энергии растянутой пружины.

Перечень используемого оборудования: динамометр, жесткость пружины которого равна 40 H/m; линейка измерительная; груз из набора по механике; масса груза равна $(0,100 \pm 0,002)$ кг; фиксатор; штатив с муфтой и лапкой.

Теоретическая часть

Механическая энергия тела — это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается **E** Единица энергии в СИ **[1Дж = 1H*м] Кинетическая энергия** – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела наквадрат его скорости, называется кинетической энергией тела:

$$E_k = \frac{mv^2}{2}$$

Кинетическая энергия — это энергия движения. Кинетическая энергия теламассой m, движущегося со скоростью \overrightarrow{v} равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему этускорость:

$$A = \frac{mv^2}{2} = E_k.$$

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие **потенциальной энергии** или **энергии** взаимодействиятел.

Потенциальная энергия — энергия тела, обусловленная взаимным расположением взаимодействующих между собой тел

или частей одноготела.

Потенциальная энергия тела в поле силы тяжести

(потенциальная энергия тела, поднятого над землёй).

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

$$E_p = \frac{kx^2}{2}$$
, где k — жесткость пружины, x - абсолютное удлинение тела.
отенциальная энергия упруго деформированного тела равна работ

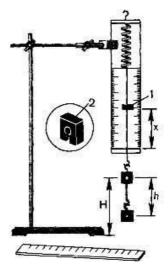
Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Потенциальная энергия при упругой деформации — это энергия взаимодействия отдельных частей тела между собой силами упругости.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Сумму E = Ek + Ep называют полной механической энергией.


Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

$$E = E\kappa + Ep = const$$

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Описание установки.

Для работы используется установка, показанная на рисунке. Она представляет собой укрепленный на штативе динамометр с фиксатором 1.

Пружина динамометра заканчивается проволочным стержнем с крючком. Фиксатор (в увеличенном масштабе он показан отдельно — помечен цифрой 2) — это легкая пластинка из пробки (размерами 5 X 7 X 1,5 мм), прорезанная ножом до ее центра. Ее насаживают на проволочный стержень динамометра. Фиксатор должен перемещаться вдоль стержня с небольшим трением, но трение все же должно быть достаточным, чтобы фиксатор сам по себе не падал вниз. В этом нужно убедиться перед началом работы. Для этого фиксатор устанавливают у нижнего края шкалы на ограничительной скобе. Затем растягивают и отпускают.

Ход работы

- 1. Груз из набора по механике прочно укрепите на крючке динамометра.
- 2. Поднимите рукой груз, разгружая пружину, и установите фиксатор внизу у скобы.
- 3. Отпустите груз. Падая, груз растянет пружину. Снимите груз и по положению фиксатора измерьте линейкой максимальное удлинение *х* пружины.
- 4. Повторите опыт пять раз. Найдите среднее значение h и х
- 5. Подсчитайте E_{1cp} =mgh и E_{2cp} = $kx^2/2$
- 6. Результаты занесите в таблицу.
- 7. Сравните отношение E_{1cp}/E_{2cp} с единицей и сделайте вывод о погрешности, с которой был проверен закон сохранения энергии.

8. Ответьте на контрольные вопросы.

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

№	h=x _{max} ,	h _{cp} =x _{cp} ,	E1cp,	E _{2cp} ,	E. /E.
опыта	M	M	Дж	Е _{2ср} , Дж	E _{1cp} / E _{2cp}
1					
2					
3					
4					
5					

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

- 1. Раскройте понятие механической энергии?
- 2. Какая энергия называется кинетической? По какой формуле она находится?
- 3. Какая энергия называется потенциальной? По какой формуле она находится?
- 4. Сформулируйте закон сохранения механической энергии.
- 5. Каковы границы применения закона сохранения механической энергии?

Лабораторная работа № 2 Тема занятия: Свойства паров.

Цель работы: освоить прием определения относительной влажности воздуха, основанный на использовании психрометра.

Перечень используемого оборудования: Психрометр

Теоритическая часть

В атмосферном воздухе всегда присутствуют пары воды, которая испаряется с поверхности морей, рек, океанов и т.п.

Воздух, содержащий водяной пар, называют влажным.

Влажность воздуха оказывает огромное влияние на многие процессы на Земле :на развитие флоры и фауны, на урожай сельхоз. культур, на продуктивность животноводства и т.д. Влажность воздуха имеет большое

значение для здоровья людей, т.к. от неё зависит теплообмен организма человека с окружающей средой. При низкой влажности происходит быстрое испарение с поверхности и высыхание слизистой оболочки носа, гортани, что приводит к ухудшению состояния.

Значит, влажность воздуха надо уметь измерять. Для количественной оценки влажности воздуха используют понятия абсолютной и относительной влажности.

Абсолютная влажность – величина, показывающая, какая масса паров воды находится в 1 м³ воздуха (т.е. это плотность водяного пара). Она равна парциальному давлению пара при данной температуре.

Парциальное давление пара – это давление, которое оказывал бы водяной пар, находящийся в воздухе, если бы все остальные газы отсутствовали.

Относительная влажность воздуха — это величина, показывающая, как далек пар от насыщения. Это отношение парциального давления р водяного пара, содержащегося в воздухе при данной температуре, к давлению насыщенного пара p_0 при той же температуре, выраженное в процентах:

$$\varphi = \frac{p}{p_0} \cdot 100 \%.$$

Если воздух не содержит паров воды, то его абсолютная и относительная влажность равны 0. Предельное значение относительной влажности — 100%. Нормальной для человеческого организма считается влажность 60%. Для измерения влажности воздуха используют прибор психометр. Психрометр. (от греч «психриа» - холод). Состоит из двух одинаковых термометров. Резервуар одного из них обернут марлей, опущенной в сосуд с водой. Вода смачивает марлю на резервуаре термометра и при её испарении он охлаждается. По разности температур сухого и влажного термометров по психрометрической таблице определяют влажность воздуха.

Ход работы:

- 1) Подготовить таблицу для записи результатов измерений и вычислений
- 2) Рассмотреть устройство психрометра.
- 3) По показаниям сухого термометра измерить температуру воздуха $t_{\text{сухого}}$ в помещении.
- 4) Записать показания термометра, резервуар которого обмотан марлей $t_{\mbox{\tiny влажного}}$
- 5) Вычислить разность показаний термометров $\Delta t = t_{\text{сухого}}$ $t_{\text{влажного}}$
- 6) По психрометрической таблице определить влажность воздуха ф
- 7) Результаты измерений и вычислений занести в таблицу.
- 8) Сделайте вывод о том, нормальная ли влажность воздуха в помещении.
- 9) Ответьте на контрольные вопросы.

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

№ опыта $t_{\text{сухого}}$, ${}^{0}C$ $t_{\text{влажного}}$, ${}^{0}C$ Δt , ${}^{0}C$ ϕ , %	
---	--

1		
1		

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

- 1. Почему при продувании воздуха через эфир, на полированной поверхности стенки камеры гигрометра появляется роса? В какой момент появляется роса?
- 2. Почему показания «влажного» термометра меньше показаний «сухого» термометра?
- 3. Могут ли в ходе опытов температуры «сухого» и «влажного» термометров оказаться одинаковыми?
- 4. При каком условии разности показаний термометров наибольшая?
- 5. Может ли температура «влажного» термометра оказаться выше температуры «сухого» термометра?
- 6. Сухой и влажный термометр психрометра показывают одну и ту же температуру. Какова относительная влажность воздуха?
- 7. Каким может быть предельное значение относительной влажности воздуха?

Лабораторная работа № 3 Тема занятия: Свойства жидкостей.

Цель работы: определить коэффициент поверхностного натяжения воды методом отрыва капель.

Перечень используемого оборудования: сосуд с водой, шприц, сосуд для сбора капель.

Теоритическая часть

Молекулы поверхностного слоя жидкости обладают избытком потенциальной энергии по сравнению с энергией молекул, находящихся внутри жидкости

Как и любая механическая система, поверхностный слой жидкости стремится уменьшить потенциальную энергию и сокращается. При этом совершается работа A:

$$A = \alpha \Delta S$$

где σ - коэффициент поверхностного натяжения. Единицы измерения Дж/м 2 или Н/м

$$\sigma = \frac{A}{\Delta S}$$
 $_{\text{ИЛИ}}$ $\sigma = \frac{F}{l}$

где ${\rm F}-{\rm сила}$ поверхностного натяжения, $l-{\rm длина}$ границы поверхностного слоя жидкости.

Поверхностное натяжение можно определять различными методами. В лабораторной работе используется метод отрыва капель.

Опыт осуществляют со шприцом, в котором находится исследуемая жидкость. Нажимают на поршень шприца так, чтобы из отверстия узкого конца шприца медленно падали капли. Перед моментом отрыва капли сила тяжести $F_{ms,m}=m_{\kappa an,nu}\cdot g$ равна силе поверхностного натяжения F, граница свободной поверхности — окружность капли

$$l = \pi \cdot d_{\kappa annu}$$

Следовательно:

$$\sigma = \frac{F}{l} = \frac{m_{\text{nannu}}g}{\pi d_{\text{nannu}}}$$

Опыт показывает, что $d_{\kappa annu}=0.9d$, где d — диаметр канала узкого конца шприца.

Массу капли можно найти, посчитав количество капель n и зная массу всех капель m.

Масса капель m будет равна массе жидкости в шприце. Зная объем жидкости в шприце V и плотность жидкости ρ можно найти массу $m = \rho \cdot V$ Ход работы:

- 1) Начертите таблицу.
- Подставьте под шприц сосуд для сбора воды и, плавно нажимая на поршень шприца, добейтесь медленного отрывания капель.
 Подсчитайте количество капель в 1 мл и результат запишите в таблицу.
- 3) Вычислите поверхностное натяжение по формуле $\sigma = \frac{\sigma}{n\pi 0.9d}$ Результат запишите в таблицу.

4) Повторите опыт с 2 мл и 3 мл воды.

$$\sigma = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$$

- 5) Найдите среднее значение поверхностного натяжения Результат запишите в таблицу.
- б) Сравните полученный результат с табличным значением поверхностного натяжения с учетом температуры.
- 7) Определите относительную погрешность методом оценки результатов измерений.

$$\delta = \frac{\left|\sigma_{\text{magr}} + \sigma_{\text{cp}}\right|}{\sigma_{\text{magr}}} \cdot 100\%$$

- 8) Результат запишите в таблицу.
- 9) Сделайте вывод.

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

№ опыт а	Масса капел ь т, кг	Число капел ь п	Диамет р канала шприца d, м	Поверхност -ное натяжение σ, Н/м	Среднее значение поверхностног о натяжения σ_{cp} , H/м	значение	Относительна я погрешность б %
1	1*10-3		2,5*10 ⁻³			0,072	

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

- 1. Почему поверхностное натяжение зависит от рода жидкости?
- 2. Почему и как зависит поверхностное натяжение от температуры?
- 3. Изменится ли результат вычисления поверхностного натяжения, если опыт проводить в другом месте Земли?

- 4. Изменится ли результат вычисления, если диаметр капель трубки будет меньше?
- 5. Почему следует добиваться медленного падения капель?

Лабораторная работа № 4 Тема занятия: Законы постоянного тока. Электрический ток в полупроводниках.

Цель работы: проверить справедливость законов последовательного и параллельного соединения проводников.

Перечень используемого оборудования: амперметр, вольтметр, лампочка, проволочная спираль, батарейка, ключ, реостат

Теоритическая часть

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

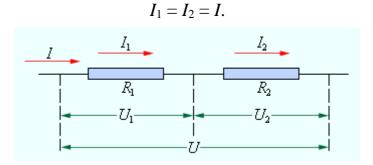


Рисунок 1.9.1. Последовательное соединение проводников

По закону Ома, напряжения U_1 и U_2 на проводниках равны

$$U_1 = IR_1$$
, $U_2 = IR_2$.

Общее напряжение U на обоих проводниках равно сумме напряжений U_1 и U_2 :

$$U = U_1 + U_2 = I(R_1 + R_2) = IR$$

где R — электрическое сопротивление всей цепи. Отсюда следует:

$$R=R_1+R_2.$$

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения U_1 и U_2 на обоих проводниках одинаковы:

$$U_1 = U_2 = U$$
.

Сумма токов $I_1 + I_2$, протекающих по обоим проводникам, равна току в неразветвленной цепи:

$$I = I_1 + I_2$$
.

Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд $I\Delta t$, а утекает от узла за то же время заряд $I_1\Delta t + I_2\Delta t$. Следовательно, $I = I_1 + I_2$.

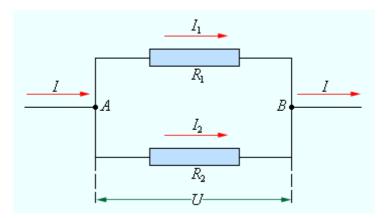
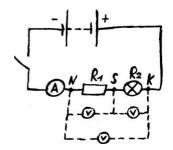


Рисунок 1.9.2. Параллельное соединение проводников

Записывая на основании закона Ома

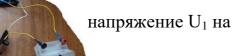
$$I_1 = \frac{U}{R_1}, \quad I_2 = \frac{U}{R_2} \text{ if } I = \frac{U}{R},$$

где R — электрическое сопротивление всей цепи, получим


$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Ход работы.

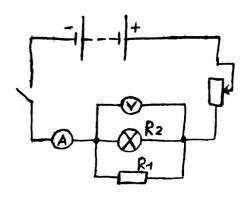

Задание 1. Изучение последовательного соединения.

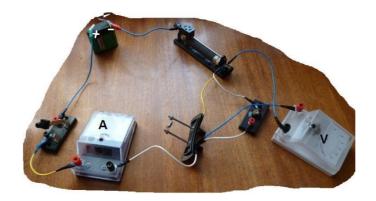
1. Соберите цепь по рисунку ниже. Вольтметр присоедините к точкам N и K цепи. Он в этом случае покажет напряжение на резисторе и лампочке вместе $(U_{\text{обш}})$. Фото собранной цепи показано на фотографии ниже. Замкните цепь и

запишите в таблицу показания силы тока I и $U_{\text{общ}}$. Цепь разомкните и покажите её учителю.

2. Подключите вольтметр к точк резисторе R_1 .

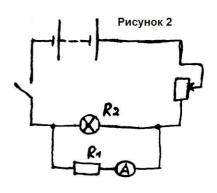
напряжение U₂ на

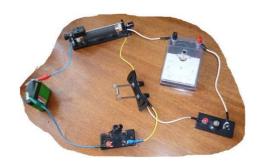

3. Подключите вольтметр к точк лампочке.


- 4. По формулам $R_1=U_1/I$, $R_2=U_2/I$, $R_{\text{общ}}=U_{\text{общ}}/I$ подсчитайте сопротивления резистора, лампочки, участка, включающего резистор и лампочку. Результаты округляйте до десятых.
- 5. Измеренные и подсчитанные значения занесите в таблицу.
- 6. Сделайте устно вывод, подтверждаются ли опытом формулы: $U_{\text{общ}} = U_1 + U_2 \quad R_{\text{общ}} = R_1 + R_2$

Задание 2. Изучение параллельного соединения.

1. Соберите цепь по рисунку ниже. Фото собранной цепи показано на фотографии ниже.


Сопротивление реостата сделайте максимальным. Замкните цепь и запишите в таблицу показания силы тока $I_{\text{общ}}$ и U. Цепь разомкните и покажите её учителю.



2. Отсоедините вольтметр, а амперметр присоедините в ветвь с резистором. Сопротивление реостата пусть остаётся максимальным. Запишите в таблицу значение силы тока I_1 , протекающей через резистор R_1 . Схема цепи смотрите на рисунке 2.

Фотография 2

- 3. Амперметр присоедините в ветвь с лампочкой. Запишите в таблицу значение силы тока I_2 , протекающей через лампочку. Схема цепи смотрите на фотографии 2.
- 4. По формулам $R_1=U/I_1$, $R_2=U/I_2$, $R_{\text{общ}}=U/I_{\text{общ}}$ подсчитайте сопротивления резистора, лампочки, участка, включающего резистор и лампочку. Результаты округляйте до десятых.
- 5. Измеренные и подсчитанные значения занесите в таблицу.
- 6. Сделайте устно вывод, подтверждаются ли опытом формулы:

$$I_{\text{общ}} = I_1 + I_2$$
 $R_{\text{общ}} = \frac{R_1 \times R_2}{R_1 + R_2}$

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

I,	U ₁ ,	U ₂ ,	U _{общ} ,	R ₁ ,	R ₂ ,	R _{общ} ,	U ₁ +U ₂ ,	R ₁ +R ₂ ,
A	B	B	В	Ом	Ом	Ом	B	Ом

U, B	I ₁ ,	I ₂ ,	I _{общ} , А	R ₁ , Ом	R ₂ , Ом	R _{общ} , Ом	I ₁ +I ₂ , A	$\frac{R_1 \times R_2}{R_1 + R_2}$

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

1. Дайте определение понятий «ветвь», «контур», «узел».

- 2. Чему равно общее сопротивление цепи при последовательном соединении сопротивлений?
- 3. Чему равна общая проводимость цепи при параллельном соединении сопротивлений?
- 4. Чему равно общее сопротивление цепи при смешанном соединении сопротивлений?
 - 5. Как понимается и читается закон Ома для заданных схем?

Лабораторная работа № 5 Тема занятия: Законы постоянного тока. Электрический ток в полупроводниках.

Цель работы: определить ЭДС и внутреннее сопротивление источника постоянного тока и оценить правдоподобность полученных результатов. **Перечень используемого оборудования:** источник ЭДС, ключ, амперметр, вольтметр, три резистора с известными сопротивлениями, соединительные проводники, реостат.

Теоритическая часть

Работа выполняется с помощью электрической цепи, состоящей из последовательно соединенных элементов: источника ЭДС, ключа, амперметра и резистора с известным сопротивлением. Измеряется сила тока в цепи при замкнутом ключе.

Примечание: Использовать резисторы с малым сопротивлением не рекомендуется, т.к. будет сказываться эффект нагревания резисторов и изменение их сопротиления.

Далее в цепи резистор заменяется другим и измеряется сила тока в цепи в новом случае. Для обоих случаев закон Ома для замкнутой цепи будет выглядеть следующим образом: $E = I_1(R_1 + r)$, $E = I_2(R_2 + r)$. Комбинируя тремя резисторами с известными сопротивлениями, можно провести три пары подобных измерений.

Ход работы.

- 1. Подготовьте листы для отчета о работе с предварительными записями.
- 2. Соберите электрическую цепь, состоящую из последовательно соединенных элементов: источника ЭДС, ключа, амперметра и резистора с известным сопротивлением. Измерьте силу тока в цепи при замкнутом ключе.

- 3. Замените резистор новым и измерьте силу тока в цепи в данном случае. Проведите аналогичные действия с третьим резистором. Результаты измерений занесите в таблицу.
- 4. Проведите вычисления ЭДС источника тока и внутреннего сопротивления источника для первого и второго, для первого и третьего, для второго и третьего случаев по следующим формулам: $r = (I_1R_1 I_2R_2)/(I_2 I_1)$, $E = I_1I_2(R_2 R_1)/(I_1 I_2)$.
- 5. Подсчитайте величины относительной и абсолютной погрешностей, обработав вычисления методом среднего арифметического.
- 6. Сделайте выводы о проделанной работе.

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

No	Сила тока в цепи	Сопротивление резистора	ЭДС источника тока	Абсолютная погрешность ЭДС	Внутреннее сопротивление источника тока	Абсолютная погрешность внутреннего сопротивления
опыта	Ι	R	E	ΔE	r	Δr
	A	Ом	В	В	Ом	Ом
1						
2						
3						

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

- 1. Почему показания вольтметра при разомкнутом и замкнутом ключе различны?
- 2. Как повысить точность измерения ЭДС источника тока? Резисторы с какими сопротивлениями удобнее использовать в данной работе?
- 3. Почему абсолютная и относительная погрешности ЭДС и внутреннего сопротивления источника тока в данной работе столь значительные?
- 4. Как влияет изменение температуры резистора при нагревании на результаты измерений в данной работе?

Лабораторная работа № 6 Тема занятия: Магнитное поле. Электромагнитная индукция.

Цель работы: изучить условия возникновения индукционного тока, ЭДС индукции.

Перечень используемого оборудования: *катушка, два полосовых магнита, миллиамперметр.*

Теоритическая часть

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции.

Многочисленные опыты Фарадея показывают, что с помощью магнитного поля можно получить электрический ток в проводнике.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Ток, возникающий при явлении электромагнитной индукции, называют индукционным.

В электрической цепи (рисунок 1) возникает индукционный ток, если есть движение магнита относительно катушки, или наоборот. Направление индукционного тока зависит как от направления движения магнита, так и от расположения его полюсов. Индукционный ток отсутствует, если нет относительного перемещения катушки и магнита.

Рисунок 1.

Строго говоря, при движении контура в магнитном поле генерируется не определенный ток, а определенная э. д. с.

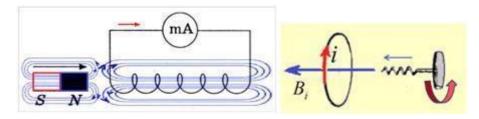


Рисунок 2.

Фарадей экспериментально установил, что *при изменении магнитного потока в проводящем контуре возникает ЭДС индукции* $E_{uнд}$, *равная скорости изменения магнитного потока через поверхность*, *ограниченную контуром*, взятой со знаком минус:

$$\varepsilon_{\text{инд}} = -\frac{\Delta\Phi}{\Delta t}$$

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Знак минус в формуле отражает правило Ленца.

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

При возрастании магнитного потока $\Phi > 0$, а $\epsilon_{\text{инд}} < 0$, т.е. э. д. с. индукции вызывает ток такого направления, при котором его магнитное поле уменьшает магнитный поток через контур.

При уменьшении магнитного потока Φ <0, а $\epsilon_{\text{инд}}$ > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий **физический смысл** – *оно выражает* закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

Ход работы. Подготовьте для отчета таблицу и по мере проведения опытов заполните её.

			Направления	
			отклонения	
		Показан	стрелки	Направление
№	Действия с	ия	миллиампер-	индукционного тока
п/п	магнитом и	милли-	метра	(по правилу Ленца)

	катушкой	ампермет	(вправо,	
		pa,	влево или не	
		мА	откланяется)	
1	Быстро вставить			(mA)
	магнит в катушку			\Rightarrow Lumb
	северным полюсом			
2	Оставить магнит в			
	катушке			lesse
	неподвижным			
	после опыта 1			
3	Быстро вытащить			
	магнит из катушки			لسسا 🚞
4	Быстро приблизить			
	катушку к			_ ←luiul
	северному полюсу			
	магнита			
5	Оставить катушку			
	неподвижной после			la constant
	опыта 4			5 8 2 8 8
6	Быстро вытащить			
	катушку от			\longrightarrow
	северного полюса			
	магнита			
7	Медленно вставить			(mA)
	в катушку магнит			⇒ luiu >
	северным полюсом			
8	Медленно			[mA]
	вытащить магнит			لسسا
	из катушки			EL 17 100'E
9	Быстро вставить в			→ F®
	катушку 2 магнита			= level
	северными			1 02 5/03

	полюсами	
10	Быстро вставить магнит в катушку южным полюсом	→ •••••
11	Быстро вытащить магнит из катушки после опыта 10	=
12	Быстро вставить в катушку 2 магнита южными полюсами	

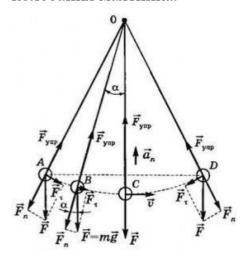
Записать общий вывод по работе на основе проведённых наблюдений.

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

- 1. В чем заключается явление электромагнитной индукции?
- 2. Какой ток называют индукционным?
- 3. Сформулируйте закон электромагнитной индукции. Какой формулой он описывается?
- 4. Как формулируется правило Ленца?
- 5. Какова связь правила Ленца с законом сохранения энергии?


Лабораторная работа № 7 Тема занятия: Механические колебания и упругие волны.

Цель работы: состоит в экспериментальной проверке формулы, связывающей период колебаний маятника с длиной его подвеса.

Перечень используемого оборудования: штатив с перекладиной и муфтой, нить с петлями на концах, груз с крючком, линейка, электронный секундомер

Теоритическая часть

Рассмотрим колебания нитяного маятника, т.е. небольшого тела (например, шарика), подвешенного на нити, длина которой значительно превышает размеры самого тела. Если шарик отклонить от положения равновесия и отпустить, то он начнет колебаться. Сначала маятник движется с нарастающей скоростью вниз. В положении равновесия скорость шарика не равна нулю, и он по инерции движется вверх. По достижении наивысшего положения шарик снова начинает двигаться вниз. Это будут свободные колебания маятника.

Свободные колебания — это колебания, которые возникают в системе под действием внутренних сил, после того, как система была выведена из положения устойчивого равновесия.

Колебательное движение характеризуют амплитудой, периодом и частотой колебаний.

Амплитуда колебаний - это наибольшее смещение колеблющегося тела от положения равновесия. Обозначается А. Единица измерения - метр [1м]. Период колебаний - это время, за которое тело совершает одно полное колебание. Обозначается Т. Единица измерения - секунда [1c]. Частота колебаний - это число колебаний, совершаемых за единицу времени. Обозначается v. Единица измерения - герц [1Гц].

Тело, подвешенное на невесомой нерастяжимой нити называют математическим маятником.

Период колебаний математического маятника определяется

 $T = 2\pi \sqrt{\frac{l}{g}}$ формулой: $T = 2\pi \sqrt{\frac{l}{g}}$ (1), где l – длина подвеса, а g – ускорение свободного падения.

Ход работы.

- 1. Подготовьте таблицу для записи результатов измерений и вычислений:
- 2. Закрепите перекладину в муфте у верхнего края стержня штатива. Штатив разместите на столе так, чтобы конец перекладины выступал за край поверхности стола. Подвесьте к перекладине с помощью нити один груз из набора. Расстояние от точки повеса до центра груза должно быть 25-30 см.
- 3. Подготовьте электронный секундомер к работе в ручном режиме.
- 4. Отклоните груз на 5-6 см от положения равновесия и замерьте время, за которое груз совершит 30 полных колебаний (при отклонении груза следите, чтобы угол отклонения не был велик).
- 5. Повторите измерение 3-4 раза и определите среднее время $t_{\rm cp1} = (t_1 + t_2 + t_3 + t_4)/4$
- 6. Вычислите период колебания груза с длиной подвеса 25-30 см по

формуле
$$T_1 = \frac{t_{q_1}}{N}$$

- 7. Увеличьте длину подвеса в четыре раза.
- 8. Повторите серию опытов с маятником новой длины и вычислите его

период колебаний по формуле $T_2 = \frac{t_{qp2}}{N}$

9. Вычислите частоты колебаний для обеих маятников по формулам $v_1 = \frac{1}{t_{q_1}}$

$$\nu_2 = \frac{N}{t_{q_2 2}}$$

- 10. Сравните периоды колебаний двух маятников, длины которых отличались в четыре раза, и сделайте вывод относительно справедливости формулы (1). Укажите возможные причины расхождения результатов.
- 11. Ответьте на контрольные вопросы.

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

<i>l,</i> м	No	N	t, c	t _{cp} , c	T, c	ν, Гц
	опыта					

$l_1 =$	1	30		
	2	30		
	3	30		
	4	30		
$l_2 =$	1	30		
	2	30		
	3	30		
	4	30		

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

- 1. Что называют периодом колебаний маятника?
- 2. Что называют частотой колебаний маятника? Какова единица частоты колебаний?
- 3. От каких величин и как зависит период колебаний математического маятника?
- 4. От каких величин и как зависит период колебаний пружинного маятника?
- 5. Какие колебания называют собственными?

Лабораторная работа № 8 Тема занятия: Электромагнитные колебания и волны.

Цель работы: изучить зависимость емкостного и индуктивного сопротивлений от частоты переменного тока и параметров элементов.

Перечень используемого оборудования: конденсатор, катушка, источник питания, генератор, реостат, вольтметр.

Теоритическая часть

В цепи переменного тока кроме резисторов могут использоваться катушки индуктивности и конденсаторы. Для постоянного тока катушка индуктивности имеет только активное сопротивление, которое обычно невелико (если катушка не содержит большое количество витков). Конденсатор же в цепи постоянного тока представляет "разрыв" (очень большое активное сопротивление). Для переменного тока эти элементы обладают специфическим реактивным сопротивлением, которое зависит как

от номиналов деталей, так и от частоты переменного тока, протекающего через катушку и конденсатор.

1.1. Катушка в цепи переменного тока.

Рассмотрим, что происходит в цепи, содержащей резистор и катушку индуктивности. Колебания силы тока, протекающего через катушку: $i = I_m \cdot \cos(\omega t)$

вызывают падение напряжения на концах катушки в соответствии с законом самоиндукции и правилом Ленца:

$$u_L = L\frac{di}{dt} = -L\omega I_m \sin(\omega t) = \omega L I_m \cos(\omega t + \pi/2)$$

т.е. колебания напряжения опережают по фазе колебания силы тока на р /2. Произведение w LI_m является амплитудой колебания напряжения:

$$U_L = \omega L I_m$$

Произведение циклической частоты на индуктивность называют индуктивным сопротивлением катушки:

$$X_L = \omega L_{(1)}$$

поэтому связь между амплитудами напряжения и тока на катушке совпадает по форме с законом Ома для участка цепи постоянного тока:

$$U_L = X_L I_{m(2)}$$

Как видно из выражения (1), индуктивное сопротивление не является постоянной величиной для данной катушки, а пропорционально частоте переменного тока через катушку. Поэтому амплитуда колебаний силы тока I_m в проводнике с индуктивностью L при постоянной амплитуде U_L напряжения убывает обратно пропорционально частоте переменного тока:

$$I_m = \frac{U_m}{\omega L}$$

1.2. Конденсатор в цепи переменного тока.

При изменении напряжения на обкладках конденсатора по гармоническому закону: $u_C = U_m \cos(\omega t)$

заряд q на его обкладках изменяется также по гармоническому закону: $q = Cu_C = CU_m \cos(\omega t)$

Электрический ток в цепи возникает в результате изменения заряда конденсатора, поэтому колебания силы тока в цепи будут происходить по закону:

$$i = \frac{dq}{dt} = -\omega C U_m \sin(\omega t) = \omega C U_m \cos(\omega t + \pi/2)$$

Видно, что колебания напряжения на конденсаторе отстают по фазе от колебаний силы тока на р /2. Произведение w CU_m является амплитудой колебаний силы тока:

$$I_m = \omega CU_m$$

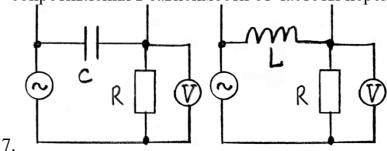
Аналогично тому, как было сделано с индуктивностью, введем понятие емкостного сопротивления конденсатора:

$$X_C = \frac{1}{\omega C(3)}$$

Для конденсатора получаем соотношение, аналогичное закону Ома: $U_C = X_C I_{m(4)}$

Формулы (2) и (4) справедливы и для эффективных значений тока и напряжения.

Ход работы.


- 1. Соберите цепь показанную на рисунке 1.
- 2. Установите следующие значения параметров:

Генератор – напряжение (эффективное) 100 В, частота 100 Гц;

Конденсатор – рабочее напряжение 400 В, емкость 10 мкФ;

Резистор – рабочая мощность 500 Вт, сопротивление 100 Ом.

- 3. Изменяя емкость конденсатора от 5 до 50 мкФ (через 5 мкФ), запишите показания вольтметров (напряжение на конденсаторе и на резисторе).
- 4. Рассчитайте эффективное значение токов, текущих в цепи, в зависимости от значения емкости конденсатора (для этого надо напряжение на резисторе разделить на его сопротивление).
- 5. Определите значения емкостных сопротивлений конденсатора для соответствующих значений его емкости и сравните их с рассчитанными по формуле (3).
- 6. Установите емкость конденсатора $10 \text{ мк}\Phi$. Изменяя частоту генератора от $20 \text{ до } 100 \text{ }\Gamma\text{ц}$ через $10 \text{ }\Gamma\text{ц}$, повторите измерения и расчеты емкостного сопротивления в зависимости от частоты переменного тока.

Соберите цепь показанную на рисунке 2.

Рис.1. Рис.2.

8. Установите следующие значения параметров:

Генератор – напряжение (эффективное) 100 В, частота 100 Гц;

Катушка - индуктивность 50 мГн;

Резистор – рабочая мощность 500 Вт, сопротивление 100 Ом.

- 9. Изменяя индуктивность катушки от 50 до 500 мГн (через 50 мГн), запишите показания вольтметров (напряжение на катушке и на резисторе).
- 10. Рассчитайте эффективное значение токов, текущих в цепи, в зависимости от значения индуктивности катушки (для этого надо напряжение на резисторе разделить на его сопротивление).

- 11. Определите индуктивные сопротивления катушки для соответствующих значений ее индуктивности и сравните их с рассчитанными по формуле (1).
- 12. Установите индуктивность катушки 100 мГн. Изменяя частоту генератора от 20 до 100 Гц через 10 Гц, повторите измерения и расчеты индуктивного сопротивления в зависимости от частоты переменного тока...
- 13. Постройте графики зависимостей индуктивного и емкостного сопротивлений от частоты переменного тока.

Задания и вопросы для формирования и контроля владения компетенциями.

Контрольные вопросы

- 1. Почему емкостное сопротивление уменьшается с увеличением частоты переменного ток а, индуктивное сопротивление увеличивается?
- 2. Каковы разницы фаз между током и напряжением для катушки и конденсатора?
- 3. В каких единицах измеряются емкостное и индуктивное сопротивления?
- 4. Как записывается аналог закона Ома для максимальных (эффективных) значений тока и напряжения для реактивных элементов конденсатора и катушки индуктивности?

Лабораторная работа № 9 Тема занятия: Природа света.

Цель работы: научиться получать уменьшенные изображения предметов с помощью собирающей линзы, геометрическими построениями определять оптическую силу линзы, пользоваться формулой линзы.

Перечень используемого оборудования: собирающая линза на подставке; лампа для карманного фонарика на подставке с источником питания; белый экран; измерительная линейка.

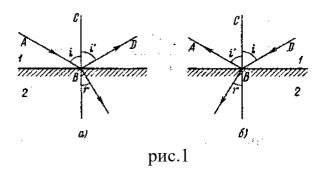
Теоритическая часть

Отношение скорости света в вакууме с к скорости света о в данной среде называется абсолютным показателем преломления этой среды:

$$n = \frac{c}{1} = \sqrt{\varepsilon \mu} \approx \sqrt{\varepsilon}$$
.

Здесьє и $_{\mu}$ - это относительные диэлектрическая и магнитная проницаемости среды, $\mu \sim 1$ для неферромагнитных сред. Для любой среды,

кроме вакуума, $\varepsilon > 1$ и n>1. Величина ε , а следовательно и n зависит от частоты света и состояния среды (ее плотности и температуры). Для газов при нормальных условиях п близко к единицы. В анизотропных средах n зависит от направления распространения света и его поляризации.


Относительным показателем преломления n_{21} второй среды относительно первой называется отношение скоростей света υ_1 и υ_2 соответственно, в первой и второй средах:

$$n_{21} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

где n_1 и n_2 - абсолютные показатели преломления света первой и второй сред.

Если $n_{21}>1$, то вторая среда называется оптически более-плотной, чем первая среда.

При падении световых лучей на идеально плоскую границу раздела двух сред, размеры которой значительно превышают длину волны, происходят явления отражения и преломления света. Направление распространения света изменяется при переходе его во вторую среду, за исключением случая перпендикулярного падения лучей на границу раздела. Углом падения і называется угол между падающим лучом и перпендикуляром к границе раздела, восстановленным в точке падения (рис.1).

Углом отражения i' называется угол между отраженным лучом и тем же перпендикуляром. Углом преломления r называется угол между преломленным лучом и тем же перпендикуляром.

Законы отражения света:

- а) Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
 - б) Угол отражения равен углу падения i=i' (рис 1a).

Законы отражения справедливы при обратном направлении хода световых лучей. Луч, распространяющийся по пути отраженного, отражается по пути падающего луча (обратимость хода световых лучей) (рис 1 б).

Отражение света, удовлетворяющее этим законам, называется зеркальным. Если условие зеркальности отражения не выполняется, то законы отражения несправедливы и отражение света называется диффузным.

Законы преломления света:

- а) лучи падающий, преломленный и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
- б) Отношение синусов углов падения и преломления есть величина постоянная, равная относительному показателю преломления данных двух сред.

$$\frac{\sin i}{\sin r} = \frac{n_2}{n_1} = n_{21}.$$

Падающий и преломленный лучи взаимно обратимы: если падающий луч будет пущен по направлению преломленного луча, то луч преломленный пойдет по направлению падающего.

Ход работы.

- 1. Получить на экране четкое уменьшеное изображение источника света.
- 2. Измерить в метрах расстояние d от источника света до линзы и расстояние f от линзы до экрана.
- 3. Построением знайти положение главных фокусов линзы и определите фокусное расстояние линзы и ее оптическую силу.
- 4. Определите фокусное расстояние F и оптическую силу D линзы по формуле

При определении оптической силы линзы фокусное (и все другие) расстояния следует брать в метрах, лишь тогда оптическую силу можо определить в диоптриях.

- 5. Получить на экране увеличенное изображение источника света и выполнить все действия, которые описаны в пунктах 1-4.
- 6. Установить, где необходимо розместить источник света, чтобы на экране было еого изображение такого же размера, как и источник. Проверить свой вывод на опыте.

Задания и вопросы для формирования и контроля владения компетенциями.

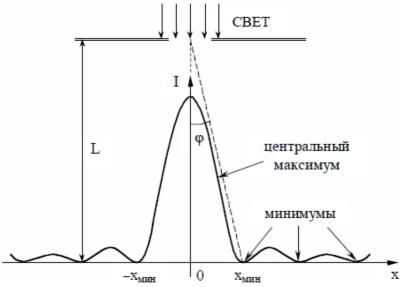
Задания к решению:

Контрольные вопросы

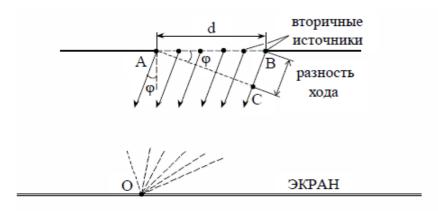
- 1. От чего зависят характеристики изображений, получаемых с помощью собирающей линзы?
- 2. Какие лучи удобно использовать для построения изображения, получаемого с помощью линзы?
- 3. Можно ли получить действительное изображение с помощью собирающей линзы? рассеивающей линзы?
- 4. Можно ли получить мнимое изображение с помощью собирающей линзы? рассеивающей линзы?
- 5. С помощью линзы получено изображение какого-то предмета. В каком случае его можно увидеть на экране когда это изображение является действительным или когда оно мнимое?
- 6. На каком расстоянии от линзы должен быть предмет, чтобы размеры самого предмета и его изображение были одинаковыми?
- 7. Можно ли по характеристикам изображения, полученного с помощью линзы, определить, какая это линза собирающая или рассеивающая?

Лабораторная работа № 10 Тема занятия: Волновые свойства света.

Цель работы. Изучение явления дифракции световых волн на узкой плоскопараллельной щели и на дифракционной решетке; экспериментальная проверка выполнимости условий для максимумов и минимумов дифракции; определение опытным путем длины волны излучения и периода дифракционной решетки.


Перечень используемого оборудования: гелий—неоновый лазер, оптический столик, держатель, дифракционная решетка, экран.

Теоритическая часть


Для объяснения явления дифракции можно воспользоваться принципом Гюйгенса — Френеля. Согласно этому принципу, волновой фронт представляется в виде совокупности большого числа вторичных когерентных источников, излучающих вторичные волны в сторону распространения волны. В этом случае образование дифракционной картины является результатом интерференции излучений от вторичных источников, а интенсивность в каждой точке экрана зависит от разностей фаз между волнами, приходящими в эту точку от вторичных источников.

На рис. 1 показано характерное распределение интенсивности в дифракционной картине от узкой щели при падении на нее плоской световой волны в случае, когда расстояние от щели до экрана L значительно превышает ширину щели b (дифракция Фраунгофера). Результат интерференции волн от вторичных источников в некоторой точке экрана O (рис. 2) зависит от разности фаз между практически параллельными световыми лучами, идущими от вторичных источников, расположенных на открытом участке щели AB. Эта разность фаз, в свою очередь, определяется разностью хода между лучами. Например, для вторичных источников, расположенных в точках A и B, указанная разность хода равна BC= ABsinφ =bsinφ

Строгий анализ явления интерференции излучения от вторичных источников приводит к следующему распределению интенсивности в дифракционной картине от узкой щели:

Puc. 1. Распределение интенсивности на экране при дифракции плоской волны на узкой щели (дифракция Фраунгофера)

Puc. 2. Интерференция вторичных волн в некоторой точке экрана О

Ход работы.

Подготовка установки к работе (выполняет лаборант).

- 1. Включить лазер.
- 2. Установить держатель с фотодатчиком на деление "0" по шкале оптической скамьи.
- 3. Не включая микроамперметр, регулировочным винтом 5 совместить прорезь фотодатчика с нулевой отметкой на шкале экрана.
- 4. Пользуясь регулировочными винтами на корпусе лазера, совместить светящееся пятно с центром прорези фотодатчика.
- 5. Регулировочным винтом отвести прорезь фотодатчика на 3 см по шкале экрана вправо.

Измерение зависимости положения х_{мин} дифракционных минимумов от расстояния L между щелью и экраном.

- 1. Установить держатель дифракционной щели на деление "60 см" по шкале оптической скамьи (прорезь фотодатчика остается смещенной на 3 см вправо от нуля на шкале экрана).
- 2. При помощи винтов раздвинуть зажимы и закрепить дифракционную щель в держателе таким образом, чтобы пятно лазерного луча освещало середину щели, а дифракционная картина на экране была наиболее отчетлива.
- 3. Отрегулировать ширину щели b, вращая винт на корпусе щели, таким образом, чтобы минимум третьего порядка (n = 3) совпадал с делением "2 см" на шкале экрана. Записать значения $L_1 = 0.6$ м, $x_1 = 2$ см и b в таблицу 1.
- 4. Не изменяя ширины щели, измерить положения дифракционного минимума $x_5 \div x_8$ третьего порядка (n=3) для четырех

других положений держателя щели ($L=0.5\,\mathrm{m};\,0.4\,\mathrm{m};\,0.3\,\mathrm{m};\,0.2\,\mathrm{m}$). Данные записать в таблицу 1.

Содержание отчета, форма и правила оформления отчета о выполненной работе: таблица.

Таблица 1

L, м	0,6	0,5	0,4	0,3	0,2
X _{мин} , мм					
b =			λ =		

Задания и вопросы для формирования и контроля владения компетенциями.

Задания к решению:

Контрольные вопросы

- 1. В чем заключается явление дифракции? Каким образом на основании принципа Гюйгенса Френеля можно объяснить образование дифракционной картины при прохождении световой волны через узкую щель?
- 2. Рассчитайте величину угла ϕ для минимума первого порядка при дифракции света с длиной волны $\lambda = 0.63$ мкм на плоскопараллельной щели шириной d = 0.05 мм.
- 3. Рассчитайте величину угла ϕ для главного максимума второго порядка в случае дифракционной решетки с периодом d=8 мкм, если длина волны $\lambda=0.63$ мкм.
- 4. Как будут изменяться положения максимумов на дифракционной картине от узкой щели, если передвигать щель ближе к экрану, не изменяя положений экрана и источника?
- 5. Объясните метод экспериментального определения длины волны излучения и периода дифракционной решетки.

Литература

Основные источники:

1.Матус Е.П. Краткий курс общей физики [Электронный ресурс]: учебное пособие / Е.П. Матус. — Электрон.текстовые данные. — Новосибирск: Новосибирский государственный архитектурно-строительный университет (Сибстрин), 2019. — 146 с. — 978-5-7795-0720-

- Режим доступа: http://www.iprbookshop.ru/68890.html
- 2. Палыгина, А. В. Физика [Электронный ресурс]: лабораторный практикум для СПО / А.
- В. Палыгина. Электрон. текстовые данные. Саратов: Профобразование, 2020. 84
- с. 978-5-4488-0331-4. Режим доступа: http://www.iprbookshop.ru/86155.html
- 3. Физика. Механические колебания. Сборник задач с решениями [Электронный ресурс]: задачник для СПО / сост. Б. К. Лаптенков. Электрон.текстовые данные. Саратов: Профобразование, 2019. 164 с. 978-5-4488-0391-8. Режим доступа: http://www.iprbookshop.ru/86468.html
- 4.Кузнецов С.И. Справочник по физике [Электронный ресурс]: учебное пособие для СПО/ С.И. Кузнецов, К.И. Рогозин— Электрон. текстовые данные. Саратов: Профобразование, 2020.— 219 с.— Режим доступа: http://www.iprbookshop.ru/66399.html.— ЭБС «IPRbooks»
- 5. Никеров, В.А. Физика для вузов: механика и молекулярная физика: учебник / В.А. Никеров. Москва: Издательско-торговая корпорация «Дашков и K° », 2020. 136 с.: табл., граф, схем. ISBN 978-5-394-00691-3; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=450772
- 6. Кузьмичева В.А. Курс лекций по общей физике. Часть І. Механика и молекулярная физика [Электронный ресурс] / В.А. Кузьмичева, О.А. Пономорев. Электрон.текстовые данные. М.: Московская государственная академия водного транспорта, 2021. 107 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/65845.html
- 7.Любая, С.И. Физика: курс лекций / С.И. Любая; Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ставропольский государственный аграрный университет. Ставрополь: Ставропольский государственный аграрный университет, 2020. 141 с.: табл., граф. схем, ил. Библиогр. в кн.; То же [Электронный ресурс]. URL: //biblioclub.ru/index.php?page=book&id=438720 8.Романова, В. В. Физика. Примеры решения задач [Электронный ресурс]: учебное пособие / В. В. Романова. Электрон. текстовые данные. Минск: Республиканский институт профессионального образования (РИПО), 2021. 348 с. 978-985-503-737-9.
- Режим доступа: http://www.iprbookshop.ru/84903.html
- 9. Инженерное материаловедение: учебник / В. В. Перинский, И. В. Перинская, С. Г. Калганова, С. Б. Вениг. Москва: Ай Пи Ар Медиа, 2023. 363 с. ISBN 978-5-4497-2065-8. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/128363.
- 10. Богацкая, А. В. Основы атомной физики и теории взаимодействия света и вещества: учебное пособие / А. В. Богацкая, А. М. Попов. Москва: Ай Пи Ар Медиа, 2023. 687 с. ISBN 978-5-4497-1792-4. Текст: электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/123644.html

Интернет источники:

www.alleng.ru/edu/phys.htm - образовательные ресурсы интернета — Физика.

www.nuclphys.sinp.msu.ru - ядерная физика в интернете www.school-collection.edu.ru - единая коллекция цифровых образовательных ресурсов.